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When a neuronal spike train is observed, what can we deduce from it
about the properties of the neuron that generated it? A natural way to
answer this question is to make an assumption about the type of neuron,
select an appropriate model for this type, and then choose the model
parameters as those that are most likely to generate the observed spike
train. This is the maximum likelihood method. If the neuron obeys sim-
ple integrate-and-fire dynamics, Paninski, Pillow, and Simoncelli (2004)
showed that its negative log-likelihood function is convex and that, at
least in principle, its unique global minimum can thus be found by gradi-
ent descent techniques. Many biological neurons are, however, known to
generate a richer repertoire of spiking behaviors than can be explained in
a simple integrate-and-fire model. For instance, such a model retains only
an implicit (through spike-induced currents), not an explicit, memory of
its input; an example of a physiological situation that cannot be explained
is the absence of firing if the input current is increased very slowly.
Therefore, we use an expanded model (Mihalas & Niebur, 2009), which
is capable of generating a large number of complex firing patterns while
still being linear. Linearity is important because it maintains the dis-
tribution of the random variables and still allows maximum likelihood
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methods to be used. In this study, we show that although convexity of
the negative log-likelihood function is not guaranteed for this model,
the minimum of this function yields a good estimate for the model pa-
rameters, in particular if the noise level is treated as a free parameter.
Furthermore, we show that a nonlinear function minimization method
(r-algorithm with space dilation) usually reaches the global minimum.

1 Introduction

Lapicque’s (1907) leaky integrate-and-fire (LIF) neuron model became very
popular for the study of networks of spiking neurons. The model neglects
the details of the rapid spike generation process while capturing subthresh-
old integration dynamics (Burkitt, 2006). LIF neurons are thus more realistic
than the simplest neural models, like McCulloch-Pitts neurons or coinci-
dence detectors (McCulloch & Pitts, 1943; Mikula & Niebur, 2003, 2004,
2008). However, in the traditional LIF neuron, the membrane voltage is re-
set to a predetermined value after each spike, making the model incapable
of explaining many behaviors that are observed in biological neurons. To
a limited extent, history dependence of spike times can be introduced by
adding spike-induced currents (Hille, 1992). The model can then explain
some more complex behaviors, like spike frequency adaptation and some
bursting, and it can predict spiking times recorded in some physiological
experiments reasonably well (Kim et al., 2009).

As a matter of principle, the introduction of spike-induced currents can-
not explain phenomena that are rooted in the history of the input to the
neuron. Some of these phenomena are anode break spiking, threshold adap-
tation, and the absence of firing when the membrane voltage is increased
very slowly. Several extensions of the LIF model generate more biophys-
ically realistic firing patterns (Izhikevich, 2003; Brette & Gerstner, 2005;
Tonnelier, Belmabrouk, & Martinez, 2007; Mihalas and Niebur, 2009). In
this letter, we focus on the model introduced by Mihalas and Niebur (2009),
who extended the LIF neuron model by adding a variable threshold, to-
gether with an arbitrary number of spike-induced currents, all with linear
dynamics. The reason is that this is the only one of the cited extensions of
the LIF models that maintains linearity of the state-variable dynamics and
thus allows easy application of the maximum likelihood methods that we
will use. Among the rich behavioral repertoire of this model are spiking
and bursting; tonic, phasic, or adapting responses; and depolarizing or hy-
perpolarizing afterpotentials and others (see Figure 1 of Mihalas & Niebur,
2009). The equations governing the time evolution of the membrane poten-
tial are solved analytically between spiking, allowing (but not requiring)
event-based implementations of the model (Mihalas, Dong, von der Heydt,
& Niebur, 2011). Furthermore, the analytical solution is obtained very
efficiently since the model dynamics can be written as a diagonalizable
set of linear differential equations.
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An important problem in computational neuroscience is the determina-
tion of the parameters of a neuronal model given the available experimental
data (Prinz, 2007). We assume that only the input to a neuron (the total in-
jected current) and its output, the spike train (i.e., the sequence of time
points when a neuron spikes), are available, not its transmembrane voltage.
This corresponds to a current clamp experiment where the injected cur-
rent is known and the neuron is free to spike, or to other situations where
the input current is known. Parameter optimization is then accomplished
by minimizing a suitable cost function. Choosing a cost function is not
easy; for instance, using the benchmark for spike train prediction proposed
by the INCF Quantitative Single-Neuron Modeling 2009 Competition, the
so-called �-factor (Kistler, Gerstner, & van Hemmen, 1997; Jolivet et al.,
2008), as the cost function results in large numbers of local minima. Find-
ing the global minimum then requires substantial computational resources
(Rossant, Goodman, Platkiewicz, & Brette, 2010).

A natural cost function for parameter fitting is the maximum likelihood
estimator of the observed sequence of spike times (Brown, Barbieri, Eden,&
Frank, 2003). Paninski, Pillow, and Simoncelli (2004) showed that the neg-
ative log-likelihood function of the stochastic LIF neuron model is concave
and that its unique global minimum can thus be reached using gradient
descent techniques. Application of this method to understanding biologi-
cal neural activity is, however, limited by the small behavioral repertoire
of this model. Assuming that noise appears only in the threshold, we have
shown that the likelihood function of the generalized LIF model (Mihalas
& Niebur, 2009) can be computed by solving a one-dimensional Fokker-
Planck equation with the threshold as stochastic variable (Russell et al.,
2010). In this study, we first generalize that result by deriving the Fokker-
Planck equation of the likelihood function with noise in both membrane
voltage and threshold. For computational efficiency, we then derive a re-
duced one-dimensional Fokker-Planck equation for the likelihood function,
in this case assuming noise only in the membrane voltage. Subsequently we
show that numerical accuracy is substantially improved by computing the
likelihood function of the generalized LIF model by a Volterra integral equa-
tion method (Buonocore, Nobile, & Ricciardi, 1987; Plesser & Tanaka, 1997;
Paninski, Haith, & Szirtes, 2008). Convexity of the negative log-likelihood
function is not guaranteed after inclusion of the variable threshold, but
we show that in practice, common optimization methods converge for the
generalized LIF neuron.

2 Methods

2.1 Neuronal Model. The membrane voltage V in the stochastic LIF
model evolves according to the dynamics

CV′(t) = −g(V(t) − Vrest) + Isti (t) + Iind (t) + σε(t), (2.1)
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where Isti (t) is the input current and Iind (t) is the sum of all spike-induced
currents. The gaussian white noise, ε(t), is scaled by the constant σ , and
C, g, and Vrest are constants representing the capacitance, membrane con-
ductance, and equilibrium membrane voltage, respectively. A spike is gen-
erated and the voltage is reset when V(t) exceeds the threshold �, a constant.
Paninski et al. (2004) showed that the negative log-likelihood function of
generating a given (observed) spike train by this model is convex and that its
global minimum can therefore be found using gradient descent techniques.

Considering the threshold �(t) to be dependent on the instantaneous
membrane potential is important for the realization of a rich spiking behav-
ior. Mihalas and Niebur (2009) introduced the following threshold behavior,

�′(t) = a (V(t) − Vrest) − b(�(t) − �∞), (2.2)

where a , b are threshold adaptation and threshold rebound constants, re-
spectively, and �∞ is the threshold at equilibrium. The dynamics of the
threshold introduces history dependence, that is, correlations between
interspike intervals. The model also allows an arbitrary number N of spike-
induced currents, given by

Iind (t) =
N∑

i=1

Ii (t),

(2.3)
I ′
i (t) =−Ii (t)/τi .

When V reaches threshold, V(t) = �(t), three types of events occur. First,
a spike is generated. Second, voltage and threshold are set according to the
following reset conditions,

V(t) → Vreset,
(2.4)

�(t) → max(�(t),�∞),

ensuring that after the update, the membrane potential V(t) is below the
instantaneous threshold �(t). Third, the spike-induced currents Ii (t) are
updated by the following rules,

Ii (t) → Ri Ii (t) + Ai , (2.5)

where Ai is the magnitude of the added current. In this study, we use
a simplified version, always choosing Ri = 1. This model is capable of
generating a much larger variety of neuronal behaviors than the traditional
LIF model (Mihalas & Niebur, 2009).
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2.2 Likelihood of a Spike Train. Assume that a neuron receives a
known stimulus (input) current and in response generates a spike train.
Assume further that we decide to model it as a generalized LIF neuron.
How do we choose the parameters of the model? A natural estimator of the
parameters is given by selecting them such that the observed spike train
is the most likely for the given input current. We thus need to maximize
the likelihood of observing the spike train or, equivalently (but technically
more convenient), minimize its negative log likelihood. In this section, we
compute the likelihood for the whole spike train as a function of the indi-
vidual interspike intervals (note that this computation would be trivial if
the interspike intervals were independent, which is not so in the general
case we are concerned with here). In the following section, we compute the
likelihood for individual interspike intervals.

The stimulus current starts at time t0 and continues throughout the trial.
The spike train is composed of a total of n spike time intervals, with the ith
of them starting at time ti−1 and ending at time ti. Define the conditional
probability that the neuron fires at time t, which is in the ith interval, given
the previous spike times intervals, as

fi (t|tk, k = 1, . . . , i − 1), ti−1 ≤ t < ti . (2.6)

Equivalently, the function fi is the probability density function of the first
passage time in the ith spike time interval. We define Ei for i > 1 as the
event that the neuron fires at times ti−1 and ti (and not in between); event
E1 consists of the stimulus onset at time t0 and the first spike at t1. The
likelihood of the observed spike train is that all events E1, . . . , En happen,
which is P(E1 E2, . . . , En). From the multiplication rule in probability theory,
we know that

P(E1 E2, . . . , En) = P(E1)P(E2|E1)P(E3|E1 E2) . . . P(En|E1 . . . En−1)

(2.7)

where

P(Ei |E1, . . . , Ei−1) = P(E1 E2, . . . , Ei )
P(E1 E2, . . . , Ei−1)

=

P(
⋂

k=1,2,...,i {Sk(t) < 0} ∩ {Sk(tk) = 0} ∩ {Sk(tk−1) = Vreset − �(tk−1)})
P(

⋂
k=1,2,...,i−1{Sk(t) < 0} ∩ {Sk(tk) = 0} ∩ {Sk(tk−1) = Vreset − �(tk−1)})

(2.8)

The first and second equalities in equations 2.8 derive, respectively, from
the definitions of conditional probabilities and the events Ei. The variable
Sk(t) := V(t) − �(t) is the difference between voltage and threshold, and the
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variable t in this equation is understood to be in the kth spike time interval,
t ∈ [tk−1, tk]. The likelihood that the neuron fires at time ti given its history
is obtained by evaluating the conditional probability in equation 2.6 at time
ti, yielding

P(Ei |E1, . . . , Ei−1) = fi (ti |tk, k = 1, . . . , i − 1). (2.9)

We show in section 2.3 how fi (ti |tk, k = 1, . . . , i − 1) is computed. Using
equation 2.9 in equation 2.7, the likelihood of the train of n spikes is then

P(E1 E2, . . . , En) =
n∏

i=1

fi (ti |tk, k = 1, . . . , i − 1), (2.10)

which is the cost function used in the likelihood estimation.

2.3 Likelihood of a Single Spike Time Interval. Having obtained the
likelihood for the spike train as a function of the likelihoods of the individual
interspike intervals, we now compute the latter—the functions fi (ti |tk, k =
1, . . . , i − 1). This can be achieved by two methods1 proposed by Paninski
et al. (2004, 2008). The first, discussed in section 2.3.1, is by solving the
Fokker-Planck equation for the probability density function of the state
variables (voltage and threshold; the time dependence of the threshold
requires a slight generalization of the approach of Paninski et al., 2004). It is
expensive to compute, and we therefore introduce, in section 2.3.2, a more
efficient one-dimensional approximation for the Fokker-Planck equation.
The second method, discussed in section 2.3.3, is by solving a Volterra
integral equation directly for the likelihood of the interspike interval.

2.3.1 Two-Dimensional Fokker-Planck Equation. For simplicity, we intro-
duce the change of variables V(t) → CV(t), �(t) → C�(t) and g → g/C .
Defining as before S = V − � (the difference between voltage and thresh-
old) and

I (t) = (g + a )Vrest − b�∞ + Isti (t) + Iind (t),

we substitute V = S + � in equations 2.1 and 2.2 and obtain

S′(t) = −(g + a )S + (b − g − a ) � (t) + I (t) + σε(t),
(2.11)

�′(t) = a (S − Vrest) + (a − b) � (t) + b�∞.

1Paninski et al. (2004) proposed a third method: directly evaluating the gaussian
integrals occurring in the likelihood functions. This method, however, provides only a
crude approximation to the likelihood and furthermore is not efficient to calculate. We
will not discuss it any further in this letter.
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Now define P(S,�, t) as the probability density function for the variables
S and � at time t. The evolution of P(S,�, t) is governed by the two-
dimensional Fokker-Planck equation:

∂ P(S,�, t)
∂t

=− ∂

∂S
[(−(g + a )S + (b − g − a )�(t) + I (t))P] + σ 2

2
∂2 P
∂S2

− ∂

∂�
[(a (S − Vrest) + (a − b)�(t) + b�∞)P]. (2.12)

There are two boundary conditions. One is absorbing,

P(0,�, t) = 0, (2.13)

since the membrane voltage can cross the threshold only once. The other
is the resetting condition at spike time ti. We show in appendix A that this
condition is

P(S,�, ti ) = 1
Z

δ(Vreset − � − S)R

(
− ∂ P(S,�, t−

i )
∂S

∣∣∣∣∣
S=0

(
(b − g − a )�(t−

i ) + I (t−
i )

) + 1
2

∂2 P(S,�, t−
i )

∂S2

∣∣∣∣∣
S=0

)
,

where δ() is the delta function, t−
i is the time immediately before the reset

happens, and R is a linear rectifier:

R(u) =
{

0 if u ≤ 0

u if u > 0
. (2.14)

Finally, Z is defined in appendix A to normalize the probability. Given
P(S,�, t) for the ith spike time interval, the likelihood of firing at time ti is
then computed from P as

fi (ti |tk, k = 1, . . . , i − 1) = −
[

∂

∂t

∫ ∞

−∞
d�

∫ 0

−∞
d S P(S,�, t)

]
t=ti

.

In practice, the 2D Fokker-Planck equation method computes the likeli-
hood function accurately, but it is not very efficient and therefore of limited
use. In the following section, we introduce a lower-dimensional Fokker-
Planck equation that results in a more efficient solution; it is the latter that
will we use in section 3.2.
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2.3.2 One-Dimensional Fokker-Planck Equation. The numerical computa-
tion of the partial differential equation, equation 2.12, is time-consuming
since it requires calculating the probability density in the two-dimensional
(S,�) space. One way to reduce the complexity of the problem is to use
a deterministic threshold �d (t), which is computed from the deterministic
version of equation 2.11:

S′
d (t) =−(g + a )Sd (t) + (b − g − a )�d (t) + I (t),

(2.15)
�′

d (t) = a (Sd (t) − Vrest) + (a − b)�d (t) + b�∞.

The variable S remains a stochastic process, governed by

S′(t) = −(g + a )S + (b − g − a )�d (t) + I (t) + σ1ε(t), (2.16)

where σ1 is the noise level for the one-dimensional problem. Note that
the deterministic threshold �d (t) from equation 2.15 is used together with
equation 2.16. The probability density then depends on only one variable,
S, and the Fokker-Planck equation is one-dimensional,

∂ P(S, t)
∂t

= −∂[Vs(t)P(S, t)]
∂S

+ σ 2
1

2
∂2 P(S, t)

∂S2 (2.17)

where

Vs(t) = −(g + a )S(t) + (b − g − a )�d (t) + I (t).

There is only one boundary condition, and it is again absorbing: P(0, t) = 0.
As shown in appendix B, the stochastic term of S(t) in the 2D case is

σ

∫ t

ti−1

(
b − g − a

b − g
eg(s−t) + a

b − g
eb(s−t))

)
dε(s), (2.18)

and in the 1D case, it is

σ1

∫ t

ti−1

e (g+a )(s−t)dε(s). (2.19)

Note that the only difference between the 1D and 2D cases for the stochas-
tic process S(t) is the noise model. Both noise terms are gaussian processes,
but the structure is more complex in the 2D case because of the additional
exponential function. We show in appendix B that when t is long enough,
its variance saturates at

σ 2

2

(
(−1 + α)2

g
− 4(−1 + α)α

b + g
+ α2

b

)
, (2.20)
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where α = a
b−g . Finally, we show in appendix B that the variance of the 1D

noise term saturates in the same limit at

σ 2
1

2(g + a )
(2.21)

and that the noise levels in the 1D and 2D conditions become comparable
if the following condition is met:

σ 2
1 = σ 2(g + a )

(
(−1 + α)2

g
− 4(−1 + α)α

b + g
+ α2

b

)
. (2.22)

Given P(S,t) for the ith spike time interval, the likelihood is

fi (ti |tk, k = 1, . . . , i − 1) = − ∂

∂t

∫
P(S, t)d S|t=ti .

We show in section 3 that for the optimization of deterministic neuronal
models, details of the noise model do not matter. Noise is treated as an aux-
iliary parameter in the optimization by starting with a large value and then
decreasing it. The optimized parameters obtained by the 1D Fokker-Planck
equation method and the 2D Fokker-Planck equation method converge in
the case of infinitesimally small noise. For reasons of efficiency, only the 1D
Fokker-Planck equation is solved in section 3.2.

2.3.3 Volterra Integral Equation. Since the time derivatives of the state
variables S,� depend linearly on the variables in equations 2.11, the Miha-
las and Niebur (2009) model is an Ornstein-Uhlenbeck process. Schrödinger
(1915) showed that its likelihood for the first-passage time can be obtained
by solving a Volterra integral equation of the second kind.

Using the same notation as in section 2.2, the likelihood for the ith spike
time interval is the first-passage-time probability density (FPTPD) function
evaluated at the neuron spike time ti (Buonocore et al., 1987; Paninski et al.,
2008). To improve computational efficiency (see section 2.3.2), we assume
that noise is injected only in the voltage, not the threshold (this approach is
complementary to the one we took in Russell et al., 2010, where we treated
the threshold as stochastic variable), that is, in the following, we replace the
stochastic threshold by the deterministic threshold �d (t).

The equation governing S(t) is the same as equation 2.16,

S′(t) = −(g + a )S + (b − g − a )�(t) + (g + a )Vrest − b�∞

+ Isti (t) + Iind (t) + σε(t). (2.23)
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We choose the initial condition for the voltage relative to threshold as2

S(ti−1) = x. From equation 2.23, the average of the S(t|x, ti−1) process in the
ith interspike interval is then

μ(t | x, ti−1) = Srest + (x − Srest)e−(g+a )(t−ti−1) +
∫ t

ti−1

I (s)e−(g+a )(t−s)ds,

(2.24)

with the definition Srest := Vrest − b
g+a �∞. Taking the expectation value of

the square of formula 2.19, we obtain the variance of the S(t|x, ti−1) process
as3


2(t | ti−1) = σ 2

2(g + a )

(
1 − e−2(g+a )(t−ti−1)). (2.25)

Since S(t) is an Ornstein-Uhlenbeck process, it is gaussian. Its transient
probability G(y, t | x, ti−1) is the probability that S(t) = y given S(ti−1) = x:

G(y, t | x, ti−1) = 1√
2π
(t | ti−1)

exp − (y − μ(t | x, ti−1))2

2
2(t | ti−1)
. (2.26)

Buonocore et al. (1987) showed that the FPTPD function p(t) for the
stochastic process S(t) can be computed by a Volterra integral equation of
the second kind,4

p(t) = −2ϕ(0, t | S0, 0) + 2
∫ t

i−1
ϕ(0, t | 0, s)p(s) ds, (2.27)

where ϕ(0, t | x, ti−1) is the probability current with the singularity removed
as proposed by Buonocore et al. (1987). As we show in appendix C, it is
expressed as

ϕ(0, t | x, ti−1) = 1
2

G(0, t | x, ti−1)
(

− (g + a )Srest − I (t)

+ σ 2


(t | ti−1)2 μ(t | x, ti−1)
)

. (2.28)

2Under the dynamics defined in equations 2.4, x is always given by x = Vreset −
max(�(ti−1), �∞) ∀i ≥ 1 but equation 2.24 and the following expressions are valid for all
values of x.

3The numerically costly evaluation of the exponential function in equation 2.25 can be
avoided by transforming it into a differential equation, d


dt = −2(g + a )
 + σ 2.
4An equivalent equation for constant input was derived and solved by Schrödinger

(1915). We also note the solution by Plesser and Tanaka (1997) in terms of a Volterra
integral equation of the first kind.
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In our previous study (Dong, Mihalas, & Niebur, 2011), we showed that
calculating the FPTPD function by discretizing the probability current ϕ can
result in large numerical errors if the noise is small. The problem is solved
by analytically calculating the mean probability current ϕ̄ over the bin size,
that is, the time interval 
t, as follows. We assume that only G(0, t|x, ti−1)
varies within the time bin [t′, t′ + 
t]; thus,

C0 = −(g + a )Srest − I (t′) + σ 2


(t′ | ti−1)2 μ(t′ | x, ti−1) (2.29)

is a constant. In the function G(0, t|x, ti−1), we introduce the notational
shortcuts μ0 := μ(t′ | x, ti−1) and μ1 := μ(t′ + 
t | x, ti−1) and consider μ(t |
x, ti−1) to vary linearly within the interval [μ0, μ1]. These approximations
allow us to integrate the probability current through the interval [t′, t′ + 
t]
analytically, making use of its gaussian shape. Defining

ξ = μ0√
2
(t′|ti−1)

, (2.30)

E = μ1 − μ0√
2
(t′|ti−1)

(2.31)

the mean probability current,

ϕ̄(0, t | x, ti−1) = 1

t

∫ t′+
t

t′
ϕ(0, τ | x, ti−1) dτ, (2.32)

can be simplified as

ϕ̄(0, t | x, ti−1) = C0

4(μ1 − μ0)
(erf(ξ + E) − erf(ξ )), (2.33)

where erf() is the error function.
Using ϕ̄ instead of ϕ in equation 2.27, we can compute the FPTPD ac-

curately for a wide range of noise levels (see Dong et al., 2011, for details).
Given the FPTPD function p(t) for the ith spike time interval, the likelihood
can then be evaluated as fi (ti |tk, k = 1, . . . , i − 1) = p(ti ).

2.4 Numerical Evaluation of Fokker-Planck and Integral Equations.
The Fokker-Planck equation is a partial differential equation (PDE) that
can be solved by finite volume methods. Briefly, state space is divided into
discrete cells. Since total probability is conserved, the integrated probability
flux through a cell’s surfaces is equal to the probability change inside the
cell. The probability density function within each cell, as well as its flux
through the surfaces between cells, is computed. An exponential integration
scheme (derived from the exact solution by exponentially interpolating each



2844 Y. Dong et al.

subregion of the grid space) is used for the finite volume method to avoid
negative probability densities (Figueiredo, 1997).

Paninski et al. (2008) described a numerical solution of the Volterra equa-
tion that yields the gradient of the likelihood function. It requires memory
of size L2, where L is the number of time bins. Since we have no need for the
gradient, we instead use an algorithm that requires only memory of order
L (to store the history of μ(t) and 
(t)). We also compute μ (see equation
2.24) and 
 (see equation 2.25) by solving differential equations, rather than
explicitly evaluating exponential functions (see footnote 3).

To increase computation speed, we use an optimization scheme devel-
opped in our earlier study (Dong et al., 2011). Briefly, time bins with negli-
gible likelihoods can be easily identified if the membrane voltage is either
far above or far below the threshold at both the beginning and the end of
the bin. This is the case if

ξ = μ0√
2
2(t′|ti−1)

> M and ξ + E = μ1√
2
2(t′|ti−1)

> M (2.34)

or

ξ < −M and ξ + E < −M, (2.35)

where ξ and E were defined in equations 2.30 and 2.31 and M is the number
of standard deviations beyond which the error function becomes indis-
tinguishable from (positive or negative) unity in the floating number rep-
resentation chosen. In our case (double precision accuracy), M = 5.9. No
computation is required in any time bin in which the criteria of equations
2.34 or 2.35 are satisfied since within machine precision, this bin does not
contribute to the likelihood. For low noise, this drastically decreases the
effective number of time bins where the function is evaluated, which con-
siderably decreases memory usage and computation time (see Dong et al.,
2011, for details).

2.5 Optimization Methods. To determine the local minimum in the
case of synthetic spike trains (see section 3.2), we use the r-algorithm with
adaptive space dilation (Shor, Kiwiel, & Ruszcayǹski, 1985), implemented
as the ralg algorithm at http://openopt.org. This heuristic algorithm is
linearly convergent in the number K of arguments of the cost function
and the number of model parameters subject to optimization, and it has
been conjectured that this holds for general K (Burke, Lewis, & Overton,
2008). To avoid runaway simulations, we limit the maximal numbers of
function evaluation and iterations. In our experience, the algorithm always
converged (without exception in over 1000 runs), that is, the set limits were
exceeded in none of them (results shown in Figure 3).
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For the model optimization in section 3.2.2 and for fitting the exper-
imental data in section 3.3, we use an evolutionary annealing-simplex
algorithm that combines the Nelder-Mead simplex algorithm with simu-
lated annealing and evolutionary techniques (Efstratiadis & Koutsoyiannis,
2002). It starts with a large population of vertices out of which a simplex is
formed by random selection. The Nelder-Mead algorithm is then run on this
simplex.

We optimized the neuronal model with 11 parameters, including some
nonlinear terms like adaptation and absolute refractory period. Parameters
are listed in Table 2.

3 Results

3.1 Accuracy of Likelihood Calculation. In this section, we compare
the performance of the Fokker-Planck equation method with that of the
Volterra integral equation method.

The first passage time probability density function of the model neuron is
calculated by the Fokker-Planck method (FP in the legend of Figure 1C) and
the Volterra integral method; both are described in section 2.4. The ground
truth is obtained from a Monte Carlo scheme (MC) by simulating 1 million
instances of the stochastic process S(t), all starting with the same parameters
but different random number seeds and computed from equation 2.23 with
σ = 10−11.

Two types of currents were provided to the model neuron. One is con-
stant (discussed in the next paragraph), and the other is time varying. The
latter, shown in Figure 1A, is the initial part of the mixed excitatory and
inhibitory current defined in section 3.2.1 (the complete time course of this
current is shown in Figure 2). For this input current, which vanishes at
t = 0, the FPTPDs calculated by all three methods agree (see Figure 1C). It
is known that a large ratio of drift to diffusion (the Péclet number) results
in large numerical errors (Odman, 1997). Although diffusion is small at
t ≈ 0 (see Figure 1G), the drift is too, as is the Péclet number, and numerical
errors are small. The variances of S(t) calculated from Figures 1E and 1F
agree with the result from equation 2.25.

If, on the other hand, a fairly strong constant current is injected from the
beginning (see Figure 1B), the Fokker-Planck method is less accurate than
the Volterra integral method (see Figure 1D). Figures 1E and 1F show the
evolution of the probability density function evaluated at the grid points
(S, t). As shown in Figure 1H, the variance of S(t) calculated from the
probability density function Figure 1F, is larger than the theoretical value
(obtained from equation 2.25).

The Volterra integral method is not subject to this limitation since it
does not require sampling of S. However, it is slower to calculate since
its complexity increases quadratically in time, while the 1D Fokker-Planck
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Figure 1: Numerical calculation of the likelihood function. Input current to the
model neuron can be time variant (A) or constant (B). The FPTPD functions are
calculated by three methods—Fokker-Planck (FP), Volterra, and Monte Carlo
(MC) methods—and are shown for the time-variant (C) and constant (D) inputs.
Note the agreement of all methods in C but not in D (see the text for details). The
probability density functions (bin size 0.1 ms) for S(t) calculated by the Fokker-
Planck method are shown in E for the time variable and in F for constant input,
and the variance of S(t) for these two cases is shown in G and H, respectively. The
curve labeled “Theory” is computed from equation 2.25. Note that the ranges
of the abscissas are not identical; they were chosen to emphasize regions where
the functions show the most significant changes.

http://www.mitpressjournals.org/action/showImage?doi=10.1162/NECO_a_00196&iName=master.img-000.jpg&w=270&h=382
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method increases linearly.5 Because of its superior accuracy, the Volterra
integral method will be used in assessing the performance of the maximum
likelihood model for the generalized LIF model in sections 3.2 and 3.3.

3.2 Validation of the Maximum Likelihood Estimator. To validate the
method, in section 3.2.1 we will generate spike trains from the generalized
integrate-and-fire neuron model (Mihalas & Niebur, 2009) with known pa-
rameters. In section 3.2.2, we then select random parameter values and
attempt to find the correct ones, using the negative log likelihood for gen-
erating the original spike trains as a cost function. We will use both a local
and a global optimization algorithm.

The local optimization serves to find, for each initial condition (ran-
domly selected parameters), the local minimum closest to the respective
initial values. This is a (somewhat rough) indicator of the usability of the
cost function: in general, it is desirable that more rather than fewer initial
conditions are in the basin of attraction of the global minimum rather than
in that of a local, nonglobal one. Indeed, we will find that the two variations
of the method (which will be introduced in section 3.2.2 and differ in the
treatment of noise) that we analyze differ in this respect, with a substan-
tially larger fraction of initial conditions ending up in the global minimum
for one versus the other (about 3/4 versus 1/2).

In the second set of numerical experiments, we will use a global mini-
mization algorithm. We show that it does indeed find the exact parameter
values in all cases in which we used it. Finally, we show that our results are
not sensitive to the details of the fitted parameters. This validates that the
maximum likelihood method is suitable for parameter estimation for the
class of problems studied here.

3.2.1 Setting Up the Validation Experiments. To generate the input current
for the numerical experiment, two spike trains of 10 s length with homo-
geneous Poisson statistics were generated: one excitatory with mean firing
rate 150 Hz and one inhibitory with rate 300 Hz. The input current to the
neuron is then calculated by convolving the Poisson trains (each a sum of
delta functions) with exponentially decaying functions of the form

Ae−t/τ H(t), (3.1)

where A is the amplitude of the currents, τ is the decay time constant, and
H(t) is the Heaviside step function. For the excitatory input, we choose
A = 0.2 nA and τ = 5 ms, and for the inhibitory input, A = −0.04 nA
and τ = 25 ms. The injected input current is the sum of excitatory and

5The integration in equation 2.27 takes i steps in the ith iteration; therefore, computa-
tion to a time of order n takes ≈ (1 + n)n/2 steps, which is O(n2).
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Figure 2: Input current for the model neuron. Neuron parameters are chosen
to give bursting and adaptive behavior. Action potentials of the resulting spike
train are shown as vertical lines above the input current.

Table 1: Parameters Used for the ABIF Model Neuron and Optimization.

C[F] g[S] a[s−1] E[A] I[A] σ [As]

ABIF 2e-10 1e-8 2 4e-9 −1e-9 0
Upper bound 8e-10 4e-8 8 1.6e-8 4e-9 1.2e-11
Lower bound 0 0 0 −1.6e-8 −4e-9 1e-15
Fixed noise parameters 2.2e-10 9.9e-9 2.4 4.4e-9 −1.1e-9 -
Variable noise parameters 2.000e-10 1.000e-8 1.992 3.995e-9 −9.984e-10 9.952e-16

Notes: The first row shows the parameters used for generating spike trains (see Figure 2)
without noise. The second and third rows show the lower and upper bounds of the
parameter space, which is linearly mapped onto the scaled space (see text). The fourth
row shows the parameters corresponding to the global minimum of the negative log
likelihood in the fixed noise case (σ = 5.5e − 12). Note that values differ from the targets
(in the ABIF row) due to the injected white noise. The last row shows the parameters
found with the variable noise method. Values are very close to the targets, including the
noise level.

inhibitory currents. The resulting current (shown in Figure 2) is injected in
the generalized integrate-and-fire neuron (term Isti on the right-hand side of
equation 2.1), and the model generates the spike train shown in the figure.
Note that the neuron model used here is deterministic, without any injected
noise (σ = 0).

The parameters of the IF model (row ABIF in Table 1) were chosen to
make it both adapting and bursting (thus, “ABIF”). The membrane rest-
ing potential and membrane resetting potential were fixed at −70 mV and
the equilibrium threshold at −50 mV. The threshold rebound time constant
was set to 100 ms and the absolute refractory period of the neuron to 2 ms.
Parameters to be determined by the optimization process are capacitance
C, membrane conductance g, and adaptation constant a. Furthermore, two
spike-induced currents are included in the optimization: E is the amplitude

http://www.mitpressjournals.org/action/showImage?doi=10.1162/NECO_a_00196&iName=master.img-001.jpg&w=299&h=116


Estimating Parameters of Generalized Integrate-and-Fire Neurons 2849

of an excitatory spike-induced current, with τ1 = 5 ms, and I that of an
inhibitory spike-induced current, with τ2 = 25 ms. These are the time con-
stants of the two components of the input current. While our method allows
optimization of any parameter, including the time constants, the larger the
number of free parameters is, the more difficult the optizimation. In many
cases, current time constants are determined by the biophysics of their re-
spective ion channels and thus known and invariable quantities, and we
assume that this is the case here (see also section 4.2). All parameters subject
to optimization are shown in Table 1, row ABIF.

3.2.2 Local and Global Minima. An important insight of Paninski (2004)
was that the negative log-likelihood function of the stochastic LIF neuron is
concave; it has only one minimum. This is not necessarily the case for more
realistic models, like that described by equation 2.2. It is thus important
to analyze the cost function (the negative log likelihood), and we find in
the remainder of this section that in general, this model has multiple local
minima. We also study two different cost functions, which differ in how
stochasticity is treated, and we compare an indicator of how many local
minima each of them has.

Likelihood estimation requires stochasticity of the neuron model, that
is, noise needs to be added to the deterministic model. We consider two
ways to include noise, which give rise to two different likelihood functions
(and thus cost functions). The first is to fix the noise amplitude σ (at a low
level) and optimize the model parameters (fixed noise case). The second is
to formally treat the noise level as a parameter and optimize the solution for
all parameters, including the noise level (variable noise case). Obviously,
the true noise level is 0, and solutions that yield nonzero results are incorrect
(not at the global minimum).

We used the r-algorithm with space dilation on 300 randomly selected
initial locations in the parameter space defined below.6 For each of these
300 points, we find the closest local minimum of the negative log likelihood
as described in section 2.5. In each dimension, upper and lower boundaries
of the search space are defined as ±4 times of the absolute value of the
true parameter; the nonlinear optimization procedure we use (r-algorithm)
will not search outside these boundaries. In the variable noise case, the
true noise level is 0, and we use the boundaries shown in rows 2 and
3 of Table 1. To ensure comparable scaling for the different parameters,
we map the parameter space linearly into a multidimensional rectangle
with edges [−1, 1] for parameters with both positive and negative values
(E, I ), and with edges [0, 1] for positive parameters (C, g, a , σ ). The initial
parameters for the optimization are drawn from a uniform distribution in

6A simple gradient descent method will run into problems because the likelihood
function is not everywhere differentiable, for example, when the threshold is crossed.



2850 Y. Dong et al.

this multidimensional rectangle (with the exception of the variable noise
case, discussed in the next paragraph), and the distance in parameter space
is defined as the sum of the squared distances along each axis in this space.

In the fixed noise case, we set the noise level to a small number,7

σ = 5.5e−12. Because of the injected white noise, the parameters correspond-
ing to the global minimum differ from the correct values—those used to gen-
erate the original spike train (Table 1, row 4). Since the noise level is subject
to optimization in the variable noise case, it is advantageous to use a larger
initial noise level. Rather than drawing it uniformly from the full range
given in Table 1, we choose it (uniformly) in the range σ ∈ [9e−12, 1.2e−12],
which is mapped in the transformed space to the interval [0.75, 1].

We ran 302 independent optimizations for the fixed noise case and 303 in-
dependent optimizations for the variable noise case with the local optimiza-
tion method. We also ran 434 independent optimizations for the variable
noise case with the global optimization method.8 As shown in Figure 3A,
49% of the optimizations successfully converged to the global minimum in
the fixed noise case. This number was substantially higher, 73.9%, in the
variable noise case (see Figure 3B). Furthermore, the computation time of
the variable noise method was lower than for the fixed noise method. In the
fixed noise case, the noise level is low but not negligible (σ = 5.5e−12), and
the number L of time bins for the function evaluation is essentially constant.
In the variable noise case, the optimization starts with a large noise level
and consequently runs slowly in the beginning. Over time, the true noise
level (0) is approached, and the contribution to the total likelihood of more
and more bins becomes negligible. These bins are then eliminated from the
evaluation, as discussed in section 2.4, which increases the computation
speed dramatically since the complexity of the algorithm is quadratic in the
number of bins (see footnote 5). As a consequence, we find that in practice,
variable noise optimization is an order of magnitude faster than fixed noise
optimization.

We also find that fixing the noise level leads to systematic errors in the
parameter estimation, as shown in Table 1, row 4. Furthermore, we find
that in the example chosen, more points are trapped in a prominent local
minimum in the fixed noise case than in the variable noise case, presumably

7We cannot choose this too small; otherwise, most of the small likelihood range for
random initial parameters is beyond the range of double precision calculations. During
the numerical computation, very small probabilities are bounded by the smallest possible
number that can be represented in double precision. Thus, if the initial conditions are too
far away from the correct values, the gradient of the negative log likelihood vanishes, and
the optimization cannot find the minimum. This problem is alleviated in the variable noise
case, where we can choose a larger initial noise level since the optimization converges on
the correct (0) level. Furthermore, computation of the likelihood involves the subtraction
of two error functions, which can lead to truncation errors (see Dong et al., 2011).

8The exact number of simulations is of no importance; we stopped when we were
convinced that we had characterized the methods in a satisfactory manner.
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Figure 3: Numerical optimization results. (A, D) Fixed noise case. (B, E) Vari-
able noise case with local optimization. (C, F) Variable noise case with global
optimization. Panels A–C show the distance of initial and optimized parame-
ters from the true values in the transformed parameter space. Panels D–F show
the negative log likelihood before and after the optimization. The fraction of
runs in which the global minimum was found is shown in the top line. In the
fixed noise case, optimized parameters have generally larger errors than in the
variable noise case due to the injected white noise. Parameters are also more
likely to fall into a deep local minimum, visible as a horizontal line of points
at negative log likelihood≈ 50, 000 in panel D. Occasional data points (five in
panel D, one in panel E) where optimized values of the negative log likelihood
are greater than the original ones are due to limitations of the optimization
algorithm; see the text.

due to the fact that the initial values of the likelihood for some of the
parameters are too small to allow computation of their correct values (see
note 7). This problem is alleviated in the variable noise case by starting with
a larger noise level. The initial likelihood values are therefore larger, and the
finite gradient of the likelihood function then allows accurate computation
of all parameters.

In Figure 3, we note that in rare cases (five for fixed noise, one for variable
noise), the negative likelihood actually increases during the optimization.
These failures of the r-algorithm are due to the fact that it is a subgradient
optimization method (Shor et al., 1985) which allows minimization of non-
differential functions. Given that the gradient of such a function does not

http://www.mitpressjournals.org/action/showImage?doi=10.1162/NECO_a_00196&iName=master.img-002.jpg&w=299&h=200
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Figure 4: Same as Figure 3B, but with varying true parameters. See the text for
details.

always exist, there is no guarantee that the solution always descends, and
in the rare cases shown, it actually climbs.

To make sure that our results do not depend on the details of the chosen
parameters, we repeated our analysis but with true parameters that were
chosen randomly. They were drawn from the same distribution as the initial
values in the previous optimization, see Table 1 (range given by rows 2 and
3). Initial values were chosen exactly as in Figure 3, and we ran the local
optimization method with variable noise for 300 parameter sets. Since the
parameters now varied over a large range, the number of spikes generated
in a trial could vary widely. If the number of spikes generated is too small,
there is not enough information to compute a “good” likelihood function.
On the other hand, if the randomly chosen parameters generate too many
spikes, the activity level is unrealistic (note that restricting ourselves to
physiologically realistic firing rates is a conservative assumption; the more
spikes are available, the easier the optimization becomes). We therefore
limited our analysis to those sets of “true” parameter values that generated
between 3 and 30 spikes per second (thus, between 30 and 300 spikes for
the 10 second simulated interval). Results are shown in Figure 4, which is
analogous to Figure 3B. Note that it would not make sense to also plot the
distances between likelihoods, as in Figure 3E, since the true parameters are
different for each of the points and likelihood distances cannot be compared
for different true parameter values.

The local optimization found the global minimum somewhat less fre-
quently than for fixed “true” parameters (0.5 versus 0.739). A possible rea-
son is that in the fixed parameter case, the true parameter values were
in the center of the interval from which the starting points were selected.
When we varied the true parameters, this was no longer the case; there-
fore, the squared distance between starting points and true parameter was
now larger, which may have led to the somewhat lower fraction of cases

http://www.mitpressjournals.org/action/showImage?doi=10.1162/NECO_a_00196&iName=master.img-003.jpg&w=119&h=123
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in which the global minimum was reached. Nevertheless, our results show
that likelihood maximization is suitable for optimal parameter search.

3.3 Fitting of Experimental Data. Having validated the model with
synthetic test data generated from a model where we know the correct
parameter values, we now apply the method to the estimation of model
parameters for fitting experimental (biological) data.

The experimental data were taken from the Spike Prediction Competi-
tion 2009 Challenge B (Gerstner & Naud, 2009). A layer-5 fast-spiking cell
was recorded with in vivo–like current injection. We used data from eight
trials of 14 s length each for the training of the model and another 8 s
for the prediction. We used the same generalized integrate-and-fire model
as before and optimized 11 parameters, including the amplitudes of four
spike-induced currents (their decay constants are kept fixed at 5 ms, 10 ms,
20 ms, 50 ms), absolute refractory period, noise level, threshold adaption,
threshold rebound, membrane time constant, voltage resetting, and equilib-
rium membrane voltage. The boundaries for these 11 parameters are shown
in Table 2, rows 1 and 2. The final optimized parameters are shown in row 3.

Training and prediction results are shown in Figures 5A and 5B. The
benchmark proposed for the quality of the training and prediction by Jo-
livet et al. (2008) is the average spike time coincidence (�− factor) between
predicted spikes and measured spikes across eight repetitions, scaled by
the intrinsic reliability of spiking across several trials. On the training data,
the model explained 68.4% of the spikes, corresponding to a normalized
performance (Jolivet et al., 2008) of 98.3%, with a confidence level (com-
puted by bootstrap) of ±4.79%. For prediction, our model explained 66.3%
of the spikes, corresponding to a performance of 93.6%, confidence level
±1.58%. We emphasize that our choice of which parameters to vary (top
row of Table 2) and which not to vary (e.g., the number of spike-induced
currents and their time constants) is based on insight into the biophysics
of neuronal dynamics but can, in the end, be justified only by the success
of the model in explaining the experimental data. Including spike-induced
currents with the generic time constants of 5, 10, 20, and 50 ms explains the
data for this specific neuron quite well, but, of course, other neuron types
have other transmembrane currents and require other assumptions.

Note that we used the data from the spike prediction competition only
as a conveniently available spike train data set. A direct comparison of
the performance of our method with others used in the competition is
not possible since we use only a small part of the training data, and we
use it for both training and prediction (since the “prediction data” have
been published, a genuine prediction is no longer possible). Nevertheless,
we note that although our prediction results are lower than those of the
winners of the competition, they are better than the majority of submitted
results (7/11). Importantly, we optimize the neuronal model based on the
likelihood function for the spike trains, without making any use of the
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Figure 5: Fitting the neural model to experimental data. (A) Training data set.
(B) Prediction data set. The bottom trace in each is the input current to the neu-
ron. In each panel, the upper group of ticks represents experimentally recorded
action potentials, with each row corresponding to one trial. The lower group
of ticks represents action potentials generated by the model. Current injections
are identical for all rows, but random seeds differ between rows.

definition of the �− factor while the entries to the competition were tailored
to achieve maximum performance under this measure.

4 Discussion

4.1 Maximum Likelihood for Parameter Estimation. For neuronal
model optimization, the key question is the choice of the cost function.
One possibility is to use the model for generating a set of spike trains and

http://www.mitpressjournals.org/action/showImage?doi=10.1162/NECO_a_00196&iName=master.img-004.jpg&w=299&h=322


2856 Y. Dong et al.

then compute the “distance” between these and the observed spike trains
using one of a variety of proposed spike train distance measures as a cost
function. This approach has been used with great success by the group of
S. Shinomoto (Gerstner & Naud, 2009), which won the International Compe-
tition on Quantitative Neuron Modeling in three straight years (2007–2009).
Shinomoto shows that maximizing the coincidence between the model and
data spike times, measured by the �− factor (Kistler et al., 1997), the cri-
terion adopted by the International Competition on Quantitative Neuron
Modeling, can result in good agreement of the model and biological spike
trains.

However, there are two drawbacks of using spike train distance mea-
sures. The first is that their cost function in general has many local minima,
and therefore a stochastic global optimization method has to be used, which
is time-consuming. The second is that spike train distance measures are not
parameter free. Popular spike distance measures (Victor & Purpura, 1996;
van Rossum, 2001; Jolivet et al., 2008) have at least one freely chosen param-
eter. The choice of the free parameter could be made part of the optimization
problem, but this increases the dimension of the problem even further and
is not an approach commonly taken.

Maximum likelihood estimation solves both of these problems. The like-
lihood function is a natural measure of distance which is also parameter free.
Furthermore, Paninski et al. (2004) showed that the negative log-likelihood
function of the leaky integrate-and-fire neuron is convex. This guarantees
the existence of a unique global minimum and also allows finding it us-
ing simple gradient descent methods. Unfortunately, the dynamics of the
straightforward LIF model are not rich enough to explain the behavior of
many biological neurons. The generalized LIF model (Mihalas & Niebur,
2009) generates a much richer dynamics, but the proof of convexity is not
applicable to it. Indeed, our numerical experiments show that the likeli-
hood function is encumbered with local minima; in our somewhat crude
estimation, about 25% to 50% (depending on how stochasticity was treated;
see section 4.3) of initial conditions were closer to the local minima rather
than the global minimum. The global minimum is easily attained with a
global optimization algorithm in all cases (see Figures 3C and 3F).

4.2 Known Knowns and Known Unknowns. Optimization of model
parameters does not occur in an intellectual vacuum. As in all other model
building, both explicit and implicit knowledge, skills, and assumptions
are necessary to build successful computational models. The situation that
we consider here and, we believe, is the practically relevant one, is that
optimization is performed on a neuronal model based on some preexisting
insight rather than in a tabula rasa situation in which nothing at all is
known about the underlying system. One always has to start with some
assumptions, for example, that the model to be used is of the integrate-
and-fire type or that it has only one compartment, since the space of all
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parameters is usually too large to be explored. Which parameters are subject
to optimization and which are selected depends on knowledge about the
neural system studied in particular and insight into properties of nervous
systems in general.

In the two examples studied in this letter, the validation of synthetic
data (see section 3.2) and the fitting of experimental data (see section 3.3),
we decided to allow the variation of current amplitudes but not current
time constants. We believe that this is typical for many real-world situa-
tions. It is frequently known which currents (e.g., resulting from synaptic
inputs) are likely present and, furthermore, at least rudiments of the bio-
physical properties of these currents. In particular, their time dependence
is frequently assumed as exponential, with time constants from a relatively
limited range–for instance, glutamatergic AMPA conductance can always
be approximated with time constants on the order of a few milliseconds, and
glutamatergic NMDA channels have time constants on the order of 150 ms
(for NR2A) or 500 ms (for NR2B). In contrast, current amplitudes are pro-
portional to the number of ion channels of a given type and can change
over orders of magnitude.

Another tool that severely constrains the parameter space to be explored
is the separation of timescales. For example, in the synthetic data example
(see section 3.2), spike frequency adaptation can be obtained by modifying
either of the two spiking-induced currents we implement, or leak currents,
or threshold adaptation. Similar considerations can be made about burst-
ing, preferred frequencies, and refractoriness. By fixing the timescale of each
channel (or searching for their variations in bounded nonoverlapping re-
gions), observing the behavior in a particular timescale basically guarantees
that the parameters at that timescale will be the most important in fitting
this behavior. Since the subthreshold dynamics is linear in most parame-
ters, it allows the behaviors at one timescale to be minimally influenced by
parameters in channels at other timescales.

4.3 Fixed Versus Adaptive Noise Level. Finding the minimum of the
negative log-likelihood function requires that the neuron model is stochas-
tic, (i.e., the presence of nonzero noise). It is a matter of practicality how
this noise is treated. One possibility is to fix the noise level to a small, fi-
nite number and find the minimum negative log likelihood for the model
parameters. Alternatively, the noise can be introduced as an additional pa-
rameter that is itself subject to optimization. Although one might expect
that increasing the dimensionality of the optimization problem (in the case
of Table 1, from 5 to 6) would substantially decrease numerical efficiency,
we found the opposite: optimizing the noise level simultaneously with the
model parameters not only eliminates the need for choosing a somewhat
arbitrary parameter but actually increases performance.

The reason for this seemingly counterintuitive result is that the choice
of the noise level is nontrivial, and, indeed, the optimal level usually varies
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during the course of the optimization process. If the noise level is chosen too
small, the optimization is likely to stay in local minima. If it is set too large,
estimated parameters will have a bias (see Table 1). The better solution
is thus to start with a larger noise level and let the optimization process
adaptively find the optimal level. Our results show that this procedure
finds the global minimum substantially more frequently than if noise is
chosen fixed. Furthermore, due to the speed optimization introduced earlier
(Dong et al., 2011), we find that the adaptive noise level algorithm also runs
considerably faster than if a fixed level of noise is chosen.

4.4 Efficiency and Accuracy of Numerical Likelihood Functions. Two
evaluation methods for the likelihood function are compared in this study:
Fokker-Planck equations and Volterra integral equations. The former uses a
PDE solver to numerically solve the Fokker-Planck equation for the proba-
bility density of the time-dependent state variables (voltage and threshold).
Its one-dimensional version (where the threshold is considered a determin-
istic, nonstochastic variable) has the advantage of fast calculation, and the
complexity is O(n). A weakness is that it suffers from numerical diffu-
sion problems, and, as we show, it is less accurate than the solution of the
Volterra integral equation. These problems are, in our experience, alleviated
if interspike intervals are long compared to the membrane time constant, in
which case the numerical diffusion is frequently small compared to actual
diffusion caused by noisy current input.

The Volterra integral method consists of computing numerically the
integral in a Volterra integral equation (of the second kind). It requires
only discretization of the time variable. We find that this method is more
accurate in the calculation of the likelihood function than the solutions
of the Fokker-Planck equation; however, its complexity grows quadrat-
ically with the number of time bins, (i.e., the length of the interspike
intervals).

These complementary properties of the two methods point to an obvi-
ous solution by combining them. For long interspike intervals, the Fokker-
Planck method is fast, and its weakness (numerical diffusion) is masked
by actual diffusion (at least for sufficiently complex input, which is usually
found in biologically relevant circumstances). For short interspike inter-
vals, the Volterra integral method is accurate, and its weakness (quadratic
complexity in number of time bins) is of little importance. Thus, by using
the Fokker-Planck equation method for long interspike intervals and the
Volterra integral equation method for short intervals, we obtain a fast and
accurate solution.

4.5 Limitations. While we believe that the algorithms proposed in
this study are powerful tools for optimal parameter estimation, they
are subject to limitations, like all other tools. Such limitations pertain
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to both the underlying neuronal model and the maximum likelihood
method.

Regarding the single neuron model, the generalized leaky integrate-
and-fire model (Mihalas & Niebur, 2009) needs to be compared with both
simpler and more complex models; application of Occam’s razor suggests
that the simplest model that explains a given phenomenon is preferable.
If a simple integrate-and-fire neuron, with constant threshold, is sufficient
to explain the behavior of a given neuron, then it should be preferred over
the model used here, in particular since Paninski et al. (2004) showed that
the negative log likelihood is a concave function and can be solved easily
and efficiently. Note that the proof by Paninski et al. (2004) is applicable
even in the presence of spike-induced currents. As far as more complex
models are concerned, there are at least two different classes of limitations
of the Mihalas & Niebur (2009) model. One is that the model cannot explain
phenomena resulting from any type of current that cannot be described
by a combination of spike-induced currents and an adaptive threshold. We
emphasize that the phenomenology of the model is very rich (Figure 1
in their article shows a large number of explained neural behaviors), but
that of nature is certainly richer. The second limitation is that the model
is formulated as a point neuron. Thus, any phenomena that depend on
the spatial extent of the neuron, for example, intradendritic computations
(Polsky, Mel, & Schiller, 2004), backpropagating action potentials (Stuart,
Schiller, & Sakmann, 1997), and many more—cannot be explained by this
model.

A severe limitation of likelihood maximization is the computational ef-
fort needed to compute and optimize the likelihood, which can substan-
tially exceed that of some alternative methods. One class of parameter
estimation uses a computational model to generate (parameter-dependent)
spike trains and then determines the parameters by minimizing the dis-
tance between observed and model-generated spike trains. We have already
discussed in section 4.1 three examples of spike distance measures—the
�−performance (Kistler et al., 1997; Jolivet et al., 2008), the Victor & Purpura
(1996) distance—and the metric developed by van Rossum (2001) designed
as a simple measure of the postsynaptic effects of the spiketrain. Typically
all three are less costly to compute than the likelihood and therefore prefer-
able when they are sufficient to solve a given problem. Shinomoto’s group
developed a series of models that won the International Competition on
Quantitative Neuron Modeling three times in a row using the �−factor
method, demonstrating that it is useful and sufficient in this case (Gerstner
& Naud, 2009). In a separate study (under review), we find, however, that
all three spike distance measures discussed are plagued by a large number
of local minima. While their performance for simple leaky integrate-and-
fire models may be acceptable, for more complex model neurons, the ease
of computing a single distance is more than offset by the need to use costly
global optimization algorithms.
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5 Conclusion

Quantitative studies of biological nervous systems characterize their be-
havior in terms of analytical models whose parameters need to be fit to
the available data. This requires choosing a model that is, on the one hand,
complex enough to capture the essential properties of the biological neurons
and, on the other hand, accessible for efficient and accurate parameter fit-
ting. One example of a successful compromise is the leaky integrate-and-fire
model, in particular, since Paninski et al. (2008) showed that its maximum
likelihood for generating a specific spike train can be found by gradient
ascent. The dynamics of this model are, however, too simple for many bi-
ological neurons. A generalized leaky integrate-and-fire model (Mihalas &
Niebur, 2009) provides much richer dynamics, and we show in this letter
that although simple gradient ascent techniques will not work, the maxi-
mum likelihood function of this model can be found readily and efficiently.
We expect that this will allow the wide spread use of the powerful maxi-
mum likelihood methods to this important interface of experimental and
theoretical neuroscience.

Appendix A: Boundary Condition of the 2D Fokker-Planck Equation

The Fokker-Planck equation 2.12 can be understood as a continuity equa-
tion,

∂ P(S,�, t)
∂t

= − 
 •J

= −∂ J S

∂S
− ∂ J�

∂�
, (A.1)

for the two-dimensional probability current J. It has two components
(J S, J�):

J S = (−(g + a )S + (b − g − a )�(t) + I (t))P − σ 2

2
∂ P
∂S

, (A.2)

J� = (a (S − Vrest) + (a − b)�(t) + b�∞)P. (A.3)

Before calculating the boundary condition, we first try to find the con-
ditional probability distribution of �, conditioned on S(t) < 0, t < ti and
S(ti ) = 0. Intuitively, one might think it is J S(S = 0,�, ti ), which is the prob-
ability of P going beyond S = 0 per unit time and per unit � at time ti and
threshold �. However, due to the absorbing boundary condition, the prob-
ability density vanishes at the threshold, P(0,�, t) = 0. From equation A.3,
we find J S(S = 0,�, ti ) = 0. Next, we consider the probability current at
S = −
S, which is the probability of P going beyond S = −
S per unit
time and per unit � at time ti. This current will push up the probability
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density P in the range S = [−
S, 0]. Due to the absorbing boundary con-
dition, we consider the absorbed P only as “firing” probability. Absorption
happens at the point S = 0 (not in an interval). To calculate the absorbed
part of the probability density P at the single point S = 0, the absorbed
probability can be approximated by

J S(S = −
S,�, ti )

S

(A.4)

if 
S is very small. Then equation A.4 is the conditional probability of �.
Considering J S(S = 0,�, ti ) = 0, equation A.4 can be expressed in another
form:

− J S(S = 0,�, ti ) − J S(S = −
S,�, ti )

S

. (A.5)

In the limit 
S → 0, the difference in equation A.5 becomes the derivative,

−∂ J S(S,�, ti )
∂S

∣∣∣∣
S=0

=
(

−(−(g + a )S + (b − g − a )�(t) + I (t))
∂ P
∂S

) ∣∣∣∣
S=0

+ ((g + a )P)
∣∣∣∣

S=0
+ σ 2

2
∂2 P
∂S2

∣∣∣∣
S=0

=
(

−((b − g − a )�(t) + I (t))
∂ P
∂S

) ∣∣∣∣
S=0

+ σ 2

2
∂2 P
∂S2

∣∣∣∣
S=0

. (A.6)

Equation A.6 is not really a density distribution function; it may contain
negative terms, and it is not normalized. Defining R as the usual linear
rectifier,

R(u) =
{

0 if u ≤ 0

u if u > 0
, (A.7)

we obtain the conditional density distribution function for �,

1
Z

R
(

−∂ J S(S,�, ti )
∂S

∣∣∣∣
S=0

)
, (A.8)

where Z is the normalization factor,

Z =
∫

R
(

−∂ J S(S,�, ti )
∂S

∣∣∣∣
S=0

)
d�. (A.9)
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Having obtained the conditional probability distribution function for �,
computing the resetting boundary condition now simply involves mapping
the density function onto the line S = Vreset − � in 2D space (S,�),

P(S,�, t+
i ) = 1

Z
δ(Vreset − � − S)R

(
−∂ J S(S,�, t−

i )
∂S

∣∣∣∣
S=0

)

= 1
Z

δ(Vreset − � − S)R
(

−∂ P(S,�, t−
i )

∂S

∣∣∣∣
S=0

(
(b − g − a )�(t−

i ) + I (t−
i )

) + 1
2

∂2 P(S,�, t−
i )

∂S2

∣∣∣∣
S=0

)
,

(A.10)

where δ() is the Dirac Delta function and t+
i , t−

i approach the spike times ti

from above and below, respectively.

Appendix B: 1D and 2D Noise Models for the Stochastic Process S

We find from equation 2.1 that the noise of the process V(t) is

NV(t) = σ e−tg
∫ t

ti−1

egsdε(s). (B.1)

Combining equations 2.1 and 2.2, we obtain an equation of S in terms of V:

S′(t) =−bS + (b − g − a )V(t) + (g + a )Vrest − b�∞ + Isti (t)

+ Ihist(t) + σε(t). (B.2)

From equation B.2, we see that the noise of S(t) is

NS(t) = σ (b − g − a )
∫ t

ti−1

e−τg
∫ τ

ti−1

egsdε(s)e−b(t−τ )dτ

+ σ e−tb
∫ t

ti−1

ebsdε(s). (B.3)

Changing the order of integrations in the first term in equation B.3,

σ (b − g − a )
∫ t

ti−1

e−τg
∫ τ

ti−1

egsdε(s)e−b(t−τ )dτ

= σ (b − g − a )e−tb
∫ t

ti−1

∫ t

s
ebτ−gτ+gsdτdε(s). (B.4)
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Equation B.3 can be simplified as

NS(t) = σ e−bt
∫ t

ti−1

(∫ t

s
(b − g − a )ebτ−gτ+gsdτ + ebs

)
dε(s)

= σ e−bt
∫ t

ti−1

(
(b − g − a )egs

b − g
(et(b−g) − es(b−g)) + ebs

)
dε(s)

= σ

∫ t

ti−1

(
b − g − a

b − g
eg(s−t) + a

b − g
eb(s−t))

)
dε(s). (B.5)

For noise appearing only in the V(t) term, we find from equation 2.23 that
the noise of the process S(t) is

N̄S(t) = σ

∫ t

ti−1

e (g+a )(s−t)dε(s). (B.6)

Defining α = a
b−g and assuming τ1 < τ2, we can calculate the covariance:

Cov(NS(τ1), NS(τ2))

= σ 2
∫ τ1

ti−1

((1 − α)eg(s−τ1) + αeb(s−τ1))((1 − α)eg(s−τ2) + αeb(s−τ2))ds

= σ 2

2

(
− eg(2ti−1−τ1−τ2)(−1 + α)2

g
+ eg(τ1−τ2)(−1 + α)2

g

+2e (b+g)ti−1 (e−gτ1−bτ2 + e−bτ1−gτ2 )(−1 + α)α
b + g

−2e−(b+g)τ2 (egτ1+bτ2 + ebτ1+gτ2 )(−1 + α)α
b + g

− eb(2ti−1−τ1−τ2)α2

b
+ eb(τ1−τ2)α2

b

)
. (B.7)

Then the variance of NS(t) is computed as

σ 2

2

(
(−1 + α)2

g
− e2g(−t+t−1+i )(−1 + α)2

g
− 4(−1 + α)α

b + g

)

+σ 2

2

(
4e (b+g)(−t+t−1+i )(−1 + α)α

b + g
+ α2

b
− e2b(−t+t−1+i )α2

b

)
. (B.8)
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If t is large compared to 1/g, 1/(b + g), 1/b, the variance of NS(t) saturates
at

σ 2

2

(
(−1 + α)2

g
− 4(−1 + α)α

b + g
+ α2

b

)
. (B.9)

Appendix C: Computation of the Probability Current
with Singularity Removed

Taylor expansion of equation 2.24 around ti−1 up to second order yields

μ(t | x, ti−1) = x + (−(g + a )(x − Srest) + I (ti−1)) 
t + O(
t2), (C.1)

where 
t = t − ti−1 and, from the Taylor expansion of equation 2.25 up to
second order:


2(t | ti−1) = σ 2
t + O(
t2). (C.2)

The transient probability G in equation 2.26 has a singularity in the limit
t → ti−1; it is 0 if y �= x and ∞ if y = x, which is a Dirac function:

lim
t→ti−1

G(y, t | x, ti−1) = δ(x − y). (C.3)

The FPTPD p(t) can be computed from a Volterra integral equation of the
second kind,

p(t) = −2ψ(0, t | S0, 0) + 2
∫ t

i−1
ψ(0, t | 0, s)p(s)ds, (C.4)

where ψ(y, t | x, ti−1) = ∂
∂t

∫ y
−∞ G(y′, t | x, ti−1)dy′, is the time derivative of

the cumulative distribution of the random variable S(t), and S0 = S(0) is
the initial condition of S(t). The time derivative of μ(t | x, ti−1) is

∂μ(t | x, ti−1)
∂t

= −(g + a )μ(t | x, ti−1) + (g + a )Srest + I (t), (C.5)

and the time derivative of 
2(t | ti−1) is

∂

∂t

2(t | ti−1) = σ 2 − 2(g + a )
2(t | ti−1). (C.6)
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Defining z = − y−μ(t|x,ti−1)√
2
2(t|ti−1)

, we then obtain ψ as

ψ(y, t | x, ti−1) = G(y, t | x, ti−1)
(

(g + a )(y − Srest) − I (t)

− 
2

2
(t | ti−1)2 (y − μ(t | x, ti−1))
)

. (C.7)

In equation 2.27, only ψ at y = 0 is used, so equation C.7 can be simplified
as

ψ(0, t | x, ti−1) = G(0, t | x, ti−1)
(

− (g + a )Srest − I (t)

+ σ 2

2
(t | ti−1)2 μ(t | x, ti−1)
)

. (C.8)

Since G(0, t | x, ti−1) = δ(x − 0) when t → ti−1, G diverges at x = 0. To re-
move the singularity, we use the following transformation, as proposed by
Buonocore et al. (1987):

ϕ(0, t | x, ti−1) = ψ(0, t | x, ti−1) + λ(t)G(0, t | x, ti−1). (C.9)

When x = 0 and t → ti−1, ϕ(0, t | x, ti−1) is set to be 0. λ(t) is obtained as

λ(t) = 1
2

((g + a )Srest + I (t)) . (C.10)

We thus find the probability current with singularity removed as

ϕ(0, t | x, ti−1) = 1
2

G(0, t | x, ti−1)
(

− (g + a )Srest − I (t)

+ σ 2


(t | ti−1)2 μ(t | x, ti−1)
)

. (C.11)
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