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An accurate calculation of the first passage time probability density
(FPTPD) is essential for computing the likelihood of solutions of the
stochastic leaky integrate-and-fire model. The previously proposed nu-
merical calculation of the FPTPD based on the integral equation method
discretizes the probability current of the voltage crossing the threshold.
While the method is accurate for high noise levels, we show that it re-
sults in large numerical errors for small noise. The problem is solved by
analytically computing, in each time bin, the mean probability current.
Efficiency is further improved by identifying and ignoring time bins with
negligible mean probability current.

1 Introduction

The leaky integrate-and-fire (LIF) neuron is one of the most successful mod-
els for single neuron dynamics, combining conceptual simplicity with nu-
merical efficacy while being biophysically realistic. For instance, a stochas-
tic LIF can be used to reproduce the observed output of many biological
neurons for a given input. A powerful method for finding the parameters
of the appropriate model is to compute the likelihood of neuronal firing.
A key component for obtaining the global likelihood is the calculation of
the first passage time probability density (FPTPD), the probability of ob-
serving the first spike at a certain time. Recently, Paninski, Pillow, and
Simoncelli (2004) proposed computing the FPTPD with a combination of
two methods in which evaluation of a gaussian integral first gives a rough
estimate, which is then refined by solving the Fokker-Planck equation. The
Fokker-Planck method needs a partial differential equation solver, which
discretizes both time and the membrane voltage. It suffers from numerical
diffusion due to the finite discretization of the parameter space (Odman,
1997). It also confines the membrane voltage within a limited space, which
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can introduce another source of error. Based on earlier solutions of Volterra
integral equations by Plesser and Tanaka (1997), more recently, Paninski,
Haith, and Szirtes (2008) suggested a novel method that is applicable to the
case of variable membrane conductances. Only time needs to be discretized
and the membrane voltage is computed exactly as an Ornstein-Uhlenbeck
process, with O(n2) complexity where n is the number of time bins (Paninski
et al., 2008).

We refer to this procedure as the Plesser-Tanaka-Paninski method, or,
for simplicity, as the gaussian method. While it is accurate for large noise
levels, we found the proposed numerical approach to suffer from large
numerical errors when the stochastic noise level is small. Low noise is not
only a biophysically important regime but also crucial for parameter search
applications which typically start with a high noise level but need to be run
in the low-noise regime to obtain accurate parameter values. In this note,
we present two improvements to the numerical calculation of the FPTPD:
one improves the accuracy, potentially by orders of magnitude, and the
other improves the algorithm’s efficiency.

2 The Problem

The stochastic integrate-and-fire neuron model is described as an Ornstein-
Uhlenbeck process (Burkitt, 2006),

C
dVm(t)

dt
= −g0(t)(Vm(t) − V0) + I0(t) + σ0

√
τε(t), (2.1)

where C is the capacitance (in pF), Vm(t) is the neuron membrane voltage
(mV), g(t) is the membrane conductance (nS), V0 is the equilibrium mem-
brane voltage (mV), I (t) is the input current (pA), ε(t) is gaussian white
noise (1/

√
ms), τ is the neuron integration time (ms) which is a time unit on

the order of the membrane time constant (see below), and σ0 is the standard
deviation of the noisy input current (pA) averaged over τ . Different authors
use different values for τ . Brunel (2000) equates τ with the membrane time
constant, while Burkitt (2006) used twice the membrane time constant. In
this note, we use the former (Brunel’s) convention.

It is convenient to write equation 2.1 in the form (Paninski et al., 2004,
2008),

dV(t)
dt

= −g(t)V(t) + I (t) + σε(t), (2.2)

where V(t) = Vm(t) − V0 is the voltage relative to the equilibrium mem-
brane voltage, g(t) = g0(t)/C is the inverse of the time-dependent mem-
brane time constant (1/ms), I (t) = I0(t)/C is the input (mV/ms) normalized
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by capacitance, and σ = σ0
√

τ/C is the intensity of the noise (mV/
√

ms).
We will use the form of equation 2.2 throughout this note.1

The first passage time probability density p(t) is then determined by a
Volterra integral equation of the second kind,

p(t) = −2ϕ[Vth, t|Vreset, 0] + 2
∫ t

0
ϕ[Vth, t|Vth, s]p(s)ds, (2.3)

where Vreset is the reset voltage and ϕ[Vth, t|x, s] is the singularity-removed
probability current through Vth at time t conditioned on having the value x
at time s.2 It can be expressed as

ϕ[Vth, t|x, s] = 1
2

[g(t)Vth − I (t)− σ 2

�2(t|s)
(Vth−μ(t|x, s))]G(Vth, t|x, s),

(2.4)

where �2(t|s) and μ(t|x, s) are, respectively, variance and mean at time t of
the gaussian stochastic process V(t|x, s), the value of the voltage at time t if
the process started with value x at time s. They are expressed as

�2(t|s) = σ 2
∫ t

s e−2
∫ t

u g(v)dvdu
μ(t|x, s) = xe− ∫ t

s g(v)dv + ∫ t
s I (u)e− ∫ t

u g(v)dvdu.
(2.5)

Both � and μ have units of mV. The term G(Vth, t|x, s) is the conditional
probability that the voltage V starting at value x at time s will evolve to Vth

at time t, where the calculation is based on the dynamics of V in the absence
of a threshold. It can be expressed as

G(Vth, t|x, s) = 1√
2π�2(t|s)

exp − (Vth − μ(t|x, s))2

2�2(t|s)
. (2.6)

Note that ϕ(Vth, t|x, s) and G(Vth, t|x, s) are functions of the membrane volt-
age which are evaluated at the threshold voltage V = Vth (the expressions on
the left-hand side of equations 2.4 and 2.6 are to be read as ϕ(V, t|x, s)|V=Vth

and G(V, t|x, s)|V=Vth ) but that the dynamics do not explicitly depend on
the threshold.

1The physiologically measurable noise σp = σ/
√

τ has units of mV/ms.
2Paninski et al. (2008) showed that the probability current has a singularity due to the

fact that the gaussian function (G(.) in equation 2.6) is a delta function when t = s. The
singularity can be removed by adding a regularizing term (Buonocore, Nobile, & Ricciar-
di, 1987). The resulting regularized probability is the singularity-removed probability
current.
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Figure 1: Illustrative example of the numerical computation of the first pas-
sage time probability density function. Time is discretized into t0, t1, t2 . . .

(dotted vertical lines). For a high noise level, the probability current ϕ varies
slowly across multiple bins (bold line) while for low noise, ϕ varies fast (thin
full line). To calculate the FPTPD (see equation 2.3), the gaussian method eval-
uates the function ϕ at times t0, t1, t2 . . . (the intersection of the dotted lines with
the ϕ curve). This is a good approximation for the broad probability current,
since it changes slowly within each time bin. In the low-noise case (sharp peak),
however, this yields a poor estimate. In the example shown, the value of ϕ is
estimated by the values at t1 and t2 (filled circles), which in this case under-
estimates the FPTPD. In contrast, the erf method proposed in this study uses
the fact that, independent of the discretization, the mean probability current (ϕ̄)
in a bin can be computed analytically. Note that the gaussian method can be
improved only with finer discretization; higher-order approximations for the
integral will not substantially improve accuracy.

To numerically solve equation 2.3, the integration on the right-hand side
is discretized in time. With the assumption that the integrand is constant
inside each discretized time interval, the integration becomes a summation
(Linz, 1985). This is a good approximation if the noise level (σ ) is high.
If, however, the noise level σ is low, the gaussian G(Vth, t|x, s) inside the
probability current ϕ becomes a sharp, narrow function, and a small change
in time can change the value of this gaussian function dramatically, as is
illustrated in Figure 1.

Two examples of the FPTPD with strong input currents are presented
in Figure 2. In Figure 2A, input is constant; in Figure 2B, it is biologi-
cally more realistic and consists of Poisson-distributed events convolved
with exponential functions. We used neuronal current data that were pub-
lished for the 2009 spike prediction competition (Gerstner & Naud, 2009).
We used data from Challenge A, B (time from 28.85 s to 29.05 s). We as-
sumed a neuronal capacitance of C = 170pF (Amzica & Neckelmann, 1999)
and threshold Vth = 10 mV. In row 2, noise is high (σ = 10 mV/

√
ms), it is
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Figure 2: Model behavior at different noise levels for a time interval of length
20 ms, bin width 0.1 ms, and membrane time constant, 1/g(t) = 20 ms. (A) The
neuron receives constant input. (B) The neuron receives exponentially decaying
impulses from a realistic spike train (see text). The input is shown in both cases
in the top row. The lower three rows show, for high (row 2), intermediate (row 3),
and low (row 4) noise levels, the first passage time probability density on the left
and the mean voltage μ(t) (gray full lines) with its standard deviation �(t) (black
dashed lines) on the right. The threshold voltage (Vth = 10 mV) is shown by a
horizontal line. The likelihood functions (in the left-most panels) are shown in
gray lines for the gaussian method and black for the erf method. The integrated
value of the FPTPD is shown in each legend; the correct value is unity in all
examples. The gaussian method can either overestimate or underestimate the
probability density when σ is small.

intermediate in row 3 (0.45 mV/
√

ms in Figure 2A and 2 mV/
√

ms in
Figure 2B), and low in row 4 (0.01 mV/

√
ms).3

In all cases, the first spike occurs at about t = 8 ms, with a broader spread
for higher than for lower noise levels. The gray lines show the FPTPD
computed with the gaussian method by Paninski et al. (2008) (we used the

3See section 5 on how this relates to physiological values. Note that we assume a
fixed threshold Vth = 10 mV for the sake of concreteness, but all results can be formulated
relative to the threshold and are then valid in general.
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Matlab code provided by this reference), and the black lines were computed
using the improved method we discuss below. The value of the FPTPD
integrated over the whole interval is given in the legend in each panel; the
correct value is unity in all cases. When σ is large, the gaussian method
yields the correct answer (see Figure 2, row 2). However, at intermediate
(third row) and small (fourth row) noise levels, the FPTPD can be either
overestimated or underestimated.

3 Improvement in Accuracy

A solution to the problem is to calculate the mean probability current
through Vth over the discretized time interval �t rather than using the
values estimated at the ends of the interval. In equation 2.4, we assume
that only G(Vth, t|x, s) is variable within the time bin [t0, t0 + �t], and
C0 = g(t0)Vth − I (t0) − σ 2

�2(t0|s) (Vth − μ(t0 | x, s)) is a constant term. In the
function G(Vth, t|x, s), we consider μ(t|x, s) to vary linearly within the inter-
val [μ(t0|x, s), μ(t0 + �t|x, s)], and we also introduce the notational short-
cuts μo := μ(t0|x, s) and μ1 := μ(t0 + �t|x, s). These approximations allow
us to integrate the probability current through the interval [t0, t0 + �t] ana-
lytically, making use of its gaussian shape. The average probability current
ϕ̄(Vth, t0 | x, s) through threshold over the time interval of length �t then is

ϕ̄(Vth, t0 | x, s)

= C0

2
√

2�2(t0|s)π�t

∫ �t

0
exp − (μ0 + t

�t (μ1 − μ0) − Vth)2

2�2(t0|s)
dt, (3.1)

where the variance �2(t0|s) term is a constant (we take it at the fixed time
t = t0). Defining E = μ1−μ0√

2�(t0|s)
and ξ = μ0−Vth√

2�(t0|s)
, we can rewrite the average

probability current ϕ̄(Vth, t0 | x, s) in terms of the error function

ϕ̄(Vth, t0 | x, s) = C0

4(μ1 − μ0)
(erf(ξ + E) − erf(ξ )) . (3.2)

This equation is the central result of this note. Using a discretized version
of the mean probability current through the threshold based on equation 3.2
(erf method), the computation of the FPTPD becomes accurate at all noise
levels (see Figure 2, black lines).4 Except for the probability current calcula-
tion, everything else to calculate the FPTPD is the same as in Paninski et al.

4A limitation is, however, inherent in the process of taking the difference of two
error functions, which can produce large errors when the difference is close to numer-
ical precision, in our simulation, 10−15 (double precision). An estimate of the differ-
ence (erf(ξ + E) − erf(ξ )) can be obtained from the asymptotic series of the erf function
(Abramowitz & Stegun, 1964, formula 7.1.23). For large |ξ | and |ξ + E |, taking only the
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(2008), including the use of this modified probability current directly in the
matrix equation.

Next, we study how numerical errors and computation time depend on
the number of bins and the noise level. We use constant input as in Figure 2
(left panels) and vary the number of time bins and the noise level σ 2 (units
of mV2/ms). Figures 3A and 3B show the results for the gaussian method.
Figure 3A shows that the numerical error increases dramatically when σ 2 is
decreased. Figure 3B shows that computation time increases quadratically
with the number of time bins and that it is independent of σ 2. Increasing the
number of bins does help to reduce the error, although at the cost of longer
computation times, as shown in Figure 3B. With small σ 2, it becomes very
difficult to solve the problem due to necessarily limited system resources
and computation time.

Figures 3C and 3D show the analogous results for the erf method. For
identical bin numbers, simulation time is approximately doubled relative
to the gaussian method since the evaluation of two error functions takes
about twice as long as that of one exponential function. The numerical error,
however, is orders of magnitude smaller than that of the gaussian method;
note the difference in scale between Figures 3A and 3C. Therefore, a much
smaller number of bins can be used to achieve comparable precision.

The approximation error in Figures 3A shows large oscillations whose
origin becomes clear from Figure 1. As long as the discretization is fine
enough compared to the width of the probability current function (thick
line), the gaussian method of computing the integral as the sum over the
values at t1, t2, ... is a good approximation. If, however, the width of the
function becomes comparable to the discretization (thin line), the approx-
imation becomes not only poor but very sensitive to the exact locations of
the bins. In the example shown, the integral is severely underestimated; if
the discretization were made slightly finer, the locations where the function
ϕ is evaluated fall on the high parts of the peak, and the integral would
be severely overestimated. As the number of time bins varies, the limits
of the integration interval move systematically and the sum alternatively
overestimates and underestimates the integral, leading to the oscillations
seen in Figure 3A. In our method, we compute analytically the value of the
integral itself. Very small oscillations (orders of magnitudes smaller) can be
seen also in this case (see Figures 3C and 3E) because the moving intervals
lead to small differences in this case too.

leading terms, we find that this difference is e−ξ2 (
ξ (1 − e−2ξ E ) + E

)
/
(√

πξ (ξ + E)
)
. In

many cases, it is, however, not necessary to evaluate this difference because bins with
small mean probability current have a negligible effect and can be set to zero (see sec-
tion 4, equations 4.1 and 4.2). It can be seen in Figure 3 that the error is indeed negligible.
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Figure 3: Dependence of error and computation time on noise level (σ 2) and
number of bins. We solved the model for a time of 20 ms (as in Figure 2).
(A) The integrated FPTPD using the gaussian method and (C,E) using the
erf method with and without speed optimization, respectively, as a function
of noise level and number of bins. Deviations from unity represent numerical
error (note the different axes). The white line shows the approximate limit where
the instabilities start; it is computed in equation 3.4. (B) Shows the computation
(wall-clock) time using one processor (AMD Phenom II X4 955 using Matlab 7.0)
for the gaussian method. (D,F) Shows the erf method without and with speed
optimization, respectively. For large noise levels, the computation time increases
since the speed optimization algorithm from section 4 loses efficacy because the
probability is spread over several bins.
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We can obtain quantitative insight into the limits of the original gaussian
approximation by computing the Taylor expansion of the right-hand side
of equation 3.2 with respect to E ,

ϕ̄(Vth, t0 | x, s) = ϕ(Vth, t0 | x, s) + O
(
E2) , (3.3)

showing that for small |E |, the right-hand side of equation 3.2 converges
to the expression in equation 2.4, which is the gaussian solution. Note that
only a second-order term appears in equation 3.3 since the zeroth-order
term is zero and the first-order term is part of ϕ. When μ0 approaches
μ1 (i.e., E approaches 0), equation 3.3 shows that ϕ̄ approaches ϕ. In this
case, however, the numerator and denominator in equation 3.2 both go to
zero and cannot be separately computed numerically once they approach
numerical precision. In this case, the gaussian method needs to be used.
For double-precision computations, the theoretical limit is ≈ 10−15, but to
obtain results with sufficient numerical precision, we switch to the gaus-
sian method whenever |μ0−μ1

μ0+μ1
| < 10−8. Note also that this switch between

equations 3.2 and 2.4 can be done dynamically; since μ0−μ1
μ0+μ1

is calculated for
every time step, the appropriate choice can be made at each time step.

We observe that E depends on five parameters: E(N, σ 2, t, s, x). We are
interested in characterizing the solution in terms of the first two (N and
σ 2), as in Figure 3. In a first-order approximation, we consider the initial
conditions s = 0 and x = Vreset . To estimate the boundary of the region
where the gaussian method is stable, we take the maximum of the function
E with respect to t:

maxt
(
E(N, σ 2, t, 0, Vreset)

)
. (3.4)

The white line in Figures 3A, 3C, and 3E shows where this function takes
the value unity. The stable region (where E < 1) is up and to the left (larger
number of time bins and larger σ 2), and the instabilities appear to the
bottom and right.

4 Improvement in Efficiency

For small noise, there is only a limited number of bins whose first passage
time probability is nonzero; only those need to be taken into account, and
we do not have to spend resources on other bins, which have very small
likelihoods. The latter are those for which the membrane voltage is either
far above or far below the threshold at both the beginning and the end of
the bin. Formally, this means the probability flux is close to zero if

ξ = μ0 − Vth√
2�2(t0|0)

> M and ξ + E = μ1 − Vth√
2�2(t0|0)

> M (4.1)
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or

ξ < −M and ξ + E < −M, (4.2)

where M is the number of standard deviations beyond which the error
function becomes indistinguishable from (positive or negative) unity for
the number of bits in the floating number representation chosen. In our
case (double precision accuracy), M = 5.9.

Instead of computing the probability current ϕ̄ using the methods from
section 3, we perform a simple (computationally inexpensive) test of the
conditions in equations 4.1 and 4.2. If one of them is met, we explicitly
set the probability current value to zero; it will then not contribute to the
FPTPD. As shown in Figure 3, application of this optimization technique
speeds up the calculation for all but the largest noise levels (see Figure
3F) without affecting the numerical error (see Figure 3E). We note that this
method is also useful if the noise is guaranteed to be small enough that the
firing probability is essentially limited to one time bin and if only the firing
time of the neuron needs to be determined.

5 Discussion

In this note, we compute the first passage time probability density for leaky
integrate-and-fire neurons by solving Volterra integral equations. As men-
tioned, one important application for such maximum likelihood methods is
optimal parameter search. Typically, parameter searches for neuron models
start with a large noise level, so that the initial parameter set starts with
a nonzero likelihood. The optimization algorithm (e.g., Nelder & Mead,
1965) then gradually tunes down the noise to physiological levels. A good
parameter set should capture most of the variance and leave only a small
portion of the variance as intrinsic noise. The accurate calculation of the like-
lihood for small noise is thus important for finding an acceptable parameter
set. At low noise levels, the previously proposed (Plesser & Tanaka, 1997;
Paninski et al., 2008) Plesser-Tanaka-Paninski method (called for simplicity
the gaussian method in this report) suffers from large numerical errors for
all but the finest discretizations (see Figure 3A) at which point, of course,
the computation may demand excessive levels of resources. Our method
solves this problem with high accuracy and high computational efficiency.

Paninski et al. (2008) showed that the gradient of the likelihood can
be calculated easily due to the fact that a matrix equation was used to
calculate the FPTPD. We improved the numerical solution by calculating
the mean probability current ϕ̄ (see equation 3.2) instead of ϕ (see equation
2.4). Conceptually the computation of the likelihood gradient is the same
for our improved method; in particular, the same chain rule is used to
calculate the gradient. The difference lies in the calculation of the gradient
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of ϕ̄ where, instead of the gradient of the gaussian function, the gradient of
the erf function is calculated. Note also that the latter is in the convenient
form of an exponential function.

It is possible to use a more accurate high-order block-by-block for the
integral calculation (Linz, 1985) to achieve better accuracy with higher effi-
ciency, an approach we did not further pursue in this short note.5 We point
out that the problems of the gaussian method in the case of low noise are not
solved by using higher-order integration methods: the problems are due to
undersampling of the probability flux within the integration bin, which, as
a matter of principle, can within the gaussian method be solved only by
higher sampling but not by using higher-order approximations.

Are the noise levels considered here of biological relevance? Answering
this question is complicated by the fact that there is no universal agree-
ment as to what part of the observed variability in the neuronal activity is
noise and what part is signal. If only the mean firing rate is considered of
importance (the rate coding hypothesis), then variations of neuronal firing
shorter than tens of milliseconds or so are considered noise. If it is assumed
that the precise timing of neural spikes is important (the temporal coding
hypothesis), then such variations are part of the signal. We will provide
noise estimates for both cases below.

Three types of noise are encountered in essentially any neuronal system.
The first is Johnson noise, which is due to the discrete nature of electric
charge carriers. The second is channel noise, which is caused by sponta-
neous opening and closing of transmembrane ion channels. Manwani and
Koch (1999) show that channel noise is at least an order of magnitude larger
than Johnson noise. We also consider a third type of noise, which we call
vesicle noise and is caused by spontaneous vesicle fusion in synaptic ter-
minals. Since in general each vesicle fusion will open (many) more than
one channel, it can be expected that it dominates channel noise.6 There is
a fourth type of noise, which is due to the variation in the exact timing of
the input.7 This synaptic noise was shown to dominate Johnson noise and
channel noise (Manwani & Koch, 1999) and since each postsynaptic event
leads to the release of at least one synaptic vesicle (otherwise, in a failed
synaptic event, there is no postsynaptic effect), it is likely that synaptic noise
also dominates vesicle noise.

5Plesser (1999) applied this technique to compute the FPTPD of the Ornstein-
Uhlenbeck process.

6In this argument, we simplify the situation by not distinguishing among the different
types of ion channels. While vesicle noise is due to opening of ligand-gated synaptic
channels, the estimate for channel noise in Manwani and Koch (1999) is for voltage-gated
Na+ and K+ channels.

7In practice, even if one considers spike timing at quite short timescales important,
one will usually not be able to account for all spike input to a neuron (except in special
cases, like in a very quiet slice preparation). Thus, most spike time measurements are
contaminated by noise due to background input.
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We estimate the synaptic noise by assuming it results from Poisson-
distributed synaptic inputs from other neurons. Let the number of presy-
naptic neurons with average firing rate λ be E0. Within a time interval of
length τ , the integration time of the neuron, the incoming number of spikes
is a Poisson random variable with mean and variance N = E0λτ . Each input
spike causes the influx of a charge Q. The sum of all these charges leads
to an average current of I = NQ

τ
whose mean is E0λQ and whose variance

is S = Q2 E0λ

τ
. The standard deviation of the membrane voltage caused by

input variability is σp,

σp =
√

S
C

= Q
C

√
E0λ

τ
= P

√
E0λ

τ
, (5.1)

where C is the capacitance of the neuron and P = Q
C . Since the AMPA re-

ceptor open time is considerably shorter than the membrane time constant,
we assume that charge is injected instantaneously. P can then be estimated
by the maximal EPSP value.8

One well-characterized system in which these parameters have been
measured is the hippocampus. For CA1 neurons which receive input from
CA3, we use P = 0.13 mV (Sayer, Redman, & Andersen, 1989), τ = 15.3 ms
(Brown, Fricke, & Perkel, 1981), E0 = 30,000 (Megas, Emri, Freund, &
Gulys, 2001), λ = 1 Hz (Frerking, Schulte, Wiebe, & Stubli, 2005), result-
ing in σp = 0.182 mV/ms. For these values, the noise level σ = 2 mV/

√
ms

in Figure 2B, row 3 corresponds to σp = 0.511 mV/ms (see note 1 for the
units). We showed that the gaussian method fails to give reasonable re-
sults for noise at this level, which is considerably larger than the estimated
synaptic noise.

For temporal coding, the variation in input spike times is part of the
signal; thus, there is no synaptic noise as defined above, and the largest noise
component is vesicle noise. Using a mean rate of spontaneous release of
0.282 Hz (Fiacco & McCarthy, 2004) and considering that the (spontaneous)
miniature EPSPs are at most as large as evoked EPSPs, an upper bound
σp = 0.096 mV/ms is obtained. This upper bound is more than five times
smaller than the noise level in Figure 2, which was discussed in the previous
paragraph. It is clearly beyond the limit where the gaussian method can be
applied.

It is highly likely that at least some nervous systems require levels of
precision that go way beyond our rather crude estimates, One, possibly
extreme, example is the circuits that control the electric fields in weakly
electric fish, which have been shown to operate at submicrosecond precision

8We have assumed purely excitatory input for simplicity. Adding inhibitory input
of the same statistics increases σp by a factor of

√
2, which does not change the basic

conclusions.
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(Moortgat, Keller, Bullock, & Sejnowski, 1998). Use of the original gaussian
method, without the improvement introduced in this note, would be very
problematic for these systems.

Finally, we point out that this paradigm is by no means limited to equa-
tion 2.2. It can just as easily be applied to the generalized leaky integrate-
and-fire neuron (Mihalas & Niebur, 2009), which reproduces a large num-
ber of observed neuronal behaviors. In fact, applicability goes way beyond
neural models. The algorithm can be used to compute first passage times
through a constant threshold for all stochastic processes with linear dy-
namics, provided the noise is gaussian and does not depend explicitly on
V, that is, Ornstein-Uhlenbeck processes. Efficient solution of this vast class
of both theoretically and practically important problems should prove to
be of significant value to a large computational community.

The source code (Matlab) is available on request from the authors.
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