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Abstract
During sleep, under anesthesia and in vitro, cortical neurons in sensory, motor, association and
executive areas fluctuate between Up and Down states (UDS) characterized by distinct membrane
potentials and spike rates [1,2,3,4,5]. Another phenomenon observed in preparations similar to
those that exhibit UDS, such as anesthetized rats [6], brain slices and cultures devoid of sensory
input [7], as well as awake monkey cortex [8] is self-organized criticality (SOC). This is
characterized by activity “avalanches” whose size distributions obey a power law with critical

exponent of about  and branching parameter near unity. Recent work has demonstrated SOC in
conservative neuronal network models [9,10], however critical behavior breaks down when
biologically realistic non-conservatism is introduced [9]. We here report robust SOC behavior in
networks of non-conservative leaky integrate-and-fire neurons with short-term synaptic
depression. We show analytically and numerically that these networks typically have 2 stable
activity levels corresponding to Up and Down states, that the networks switch spontaneously
between them, and that Up states are critical and Down states are subcritical.

Self-organized criticality (SOC) characterizes the spread of forest fires [11], earthquakes
[12], and avalanches of idealized grains toppling down sand-piles [13]. Analogously,
neuronal activity propagates in “neuronal avalanches” [14]. UDS behavior is also a network-
level phenomenon: a high proportion of the neurons in large cortical areas alternate between
states at the same time [2,15,16,17,18]. While Down states are quiescent [19], Up states
have high synaptic and spiking activity [5], resembling that of REM sleep and wake-fulness
[20]. Differences in synaptic activity and neuronal responsiveness between UDS suggest
that avalanche behavior differs as well.

A recent modeling study [9] demonstrated criticality in a conservative network of non-leaky
integrate-and-fire neurons with short-term synaptic depression (STSD). Upon addition of
voltage leak, however, networks required a compensatory current to remain critical. In a
similar conservative network with depression and facilitation, the same group found two
stable states, one critical and one subcritical [10]. Non-conservative networks of leaky
integrate-and fire (LIF) neurons also exhibit stable Up and Down states [21], which can be
obtained with STSD alone [22]. We therefore investigate whether critical behavior occurs in
either the Up or Down state in these non-conservative LIF/STSD systems.
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Solving the Fokker-Planck equation for the probability density of the membrane potential in
a mean-field approximation, we obtain an analytic solution for the branching parameter
during Up and Down states. The branching parameter is close to unity in the Up state,
indicating critical behavior, and close to zero (subcritical) in the Down state. Simulated
networks of LIF neurons, just as biological neural systems, also have these properties. This
behavior is observed even as additional biologically realistic features, including small-world
connectivity, NMDA and inhibition, are introduced.

We model networks of LIF neurons with excitatory synapses and STSD. Each neuron forms
synapses with on average ns other neurons with uniform probability. Also, each neuron
receives Poisson external input at rate fe. Glutamatergic synaptic currents of the α-amino-3-
hydroxy-5-methyl-4-isoxazolepropionic (AMPA) type from other neurons, Iin(t), and
external inputs, Ie(t), are modeled as exponentials with amplitude w and integration time
constant τs,

(1)

In agreement with physiology, each synapse has multiple (nr) release sites. When a neuron

fires spike i (at time ), only some sites have a docked ‘utilizable’ vesicle. A utilizable site
releases its vesicle with probability pr, causing a postsynaptic current, eq. (1). To model
STSD, pr is scaled by a factor, Uj(t), that is zero immediately after a release at site j, at time

, and recovers exponentially with time constant τR. Neuronal membranes have potential V ,
resting potential Vr, resistance R, and capacitance C. Upon reaching threshold (θ), the
potential resets to Vr after refractory period τrp. The network dynamics are:

(2)

(3)

(4)

where ζ is a random variable uniformly distributed on [0, 1], and H(x) is the Heaviside step
function.

The time derivative of mean synaptic utility, u(t) =< Uj(t) > j, can be expressed analytically
(see Methods):

(5)

Furthermore, the probability distribution of subthreshold membrane potentials, P(V, t), can
be modeled as a diffusion-drift equation [23]. The drift, with velocity υd(u, f, V), results
from the net change in potential due to synaptic inputs minus the leak. Diffusion, D(u, f),
arises because synaptic inputs occur with Poisson-like, rather than uniform, timing. The
Fokker-Planck equation for the probability density of V is,
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(6)

(7)

(8)

where Ve = weτs/C and Vin = prnrwinτs/C are, respectively, the mean changes in membrane
potential resulting from a single external and internal input event.

The firing rate is the probability current that passes through threshold:

(9)

We calculate the time derivative of u analytically and of f numerically (Supplementary
Methods S1.1) to analyze fixed points of the dynamical system. For typical parameter values
for cortical neurons [24, 25], the system contains two stable fixed points, a quiescent Down
state with maximal synaptic utility and an Up state with depressed synaptic utility, separated
by a saddle-node that sends trajectories to either stable state along the unstable manifold
(Figure 1a).

Networks with weak synapses (small win) exhibit only a quiescent Down state (f ≈ 0 spikes/
s). An unstable Up state and a saddle node emerge with slightly stronger synapses, and with
strong synapses the Up state becomes stable. Increasing win further decreases the firing rate
of the saddle node, thereby constricting the basin of attraction for the Down state and
making the Up state the dominant feature. When vesicle replenishment is fast (short τR), the
Up state firing rate is high. As replenishment becomes slower, the Up state firing rate
decreases, then the Up state becomes unstable and ultimately collides with the saddle node
at a saddle node bifurcation. Beyond the bifurcation, networks do not recover from STSD
rapidly enough to sustain Up states.

The branching parameter, the average number of neurons that one neuron is able to activate
during an avalanche, is equal to the probability that a postsynaptic neuron’s membrane
potential will cross threshold due to one input, times the number of postsynaptic neurons to
which a neuron connects. Since the influence of any given synapse on a cortical neuron is
small, the integral can be approximated by the slope near threshold.

(10)

where ε := uVin ≪ (θ−Vr) is the strength of a synapse. This can be expressed in terms of the
firing rate at stable states (see Methods), f*:

(11)
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The analytical solution shows that (quiescent) Down states are subcritical, while (active) Up
states are critical (Figure 1b). In Down states, external input dominates total synaptic input
and the branching parameter approaches zero, indicative of subcritical networks. In Up
states, input from other neurons within the network dominates synaptic input, the branching
parameter approaches unity, and the network is critical.

We simulated networks of neurons described in eqs. (2)-(4), using a generalized linear LIF
model [26]. The networks spontaneously alternate between two distinct levels of firing
corresponding to Up and Down states (Figure 2a). Our analytical solution for the branching
parameter is in close agreement with simulations for instantaneous synaptic voltage steps
assumed in [23] (Supplementary Data S2.1). To increase biological realism, we also
modeled exponential synaptic currents and we obtained UDS that persist for simulated
seconds, which is consistent with findings in cortex [27]. In agreement with previous
findings [2,21], Up state durations are exponentially distributed (Figure 2b; see
Supplementary Data S2.2 for Up state interspike interval distribution).

The branching parameter follows the firing rate at state transitions. At Down-to-Up
transitions, the branching parameter increases from zero and overshoots unity as activity
spreads before finally settling near unity (Figure 2c). At Up-to-Down transitions, the
branching parameter decays with the firing rate towards zero (Figure 2d). See
Supplementary Data S2.3 for further discussion of state transitions.

Each Up or Down state was composed of hundreds or thousands of avalanches. Avalanche
size and lifetime distributions in the Up state follow power laws with critical exponents near
-1.5 and -2.0 (Figure 3a,b; maximum likelihood estimators: -1.50 and -2.03; verified by
Kolmogorov-Smirnov tests with the method described in [28]), respectively. Avalanche
distributions in the Down state drop off rapidly such that few avalanches of size >10 occur.
We then increased the biological realism of our networks by introducing small-world
connectivity (Supplementary Data S2.4), glutamatergic synapses of the N-methyl-D-aspartic
acid (NMDA) type, and inhibitory currents (Figure 3c; Supplementary Data S2.5). While
NMDA alone failed to reduce Up state firing rates to biological values, adding inhibition
reduced the rates markedly (purely excitatory: 64.0 spikes/s; 1I:8E: 35.6 spikes/s; 1I:4E: 8.7
spikes/s; 1I:2E: 8.7 spikes/s; 1I:1E: 8.4 spikes/s). In all of these conditions Up states are
critical and Down states are subcritical, except for the highest levels of inhibition in which
the power law in avalanche size distribution begins to break down near system size.

Finally, we inspect the robustness of these results by varying crucial model parameters.
While Up state firing rates change only slightly with changes in win and τR (Figure 4a), Up
state durations vary widely (Figure 4b). In all cases, the branching parameter remains near
unity in the Up state and near zero in the Down state (Figure 4c), and the Up state critical
exponent near -1.5 (Figure 4d). See Supplementary Data S2.6 and S2.7 for additional
parameters.

In this contribution, we bring together two phenomena of complex networks that have been
observed experimentally in neural systems: self-organized criticality and Up and Down state
behavior. We predict that biological Up and Down states are fundamentally different from a
dynamical systems perspective: Up states are critical and Down states are subcritical. Up
states achieve criticality because (1) a high firing rate ensures that avalanches propagate
through the system faster than new avalanches are initiated (fe ≪ f*), while (2) activity is
maintained at a constant level by compensating for leaks with an equivalent amount of
synaptic input, arising primarily from recurrent activation, that makes the system
temporarily quasi-conservative on average.
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Memory consolidation is hypothesized to take place during sleep [29], in which
hippocampal and neocortical Up and Down states are phase-locked [18]. This process may
be enhanced during critical Up states, when information transmission [7] and storage [30]
approach their theoretical maxima.

Methods
Analytical solution for synaptic utility u̇

The time derivative of the mean synaptic utility is the sum of the rate of recovery and the
rate of depression, u̇ = kR + kD. Recovery happens between releases and the average rate can
be obtained from the time derivative of eq. (3),

(12)

(13)

to yield the first term on the rhs of eq. (5).

A release site fully depletes following a vesicle release, which happens with probability pr
for each spike (which occur at rate f). Thus, the average rate of depletion is,

(14)

yielding the second term on the rhs of eq. (5).

Analytical Solution for the branching parameter σ
We approximate the branching parameter at fixed points (u*,f*) using the slope near
threshold from eq. (10)

(15)

where ε = uVin ≪ (θ − Vr) was defined after eq. (10), and we know the stationary firing rate
from eqs. (8) and (9)

(16)

Solving for  in eq. (16) and inserting it into eq. 15 yields

(17)

In addition, the u-nullcline can be calculated analytically from eq. (5) to yield u* in terms of
f*:
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(18)

Combining eqs. (17) and (18), and noting that fstat = f * at fixed points, we obtain eq. (11),
the analytical solution for the branching parameter at fixed points.

Two distinct stable states
Up and Down states were established along two criteria of the firing rate: bimodality and
contiguity. Hartigan’s Dip test was performed on the firing rate histograms (Figure 2b) to
test for bimodality; the firing rate histogram is bimodal (p=0.015). Thus, we refer to time
bins with a mean firing rate <5 spikes/s as being in the Down state and those with rates >5
spikes/s as being in the Up state. To establish that ‘states’ are contiguous in time, which we
consider the equivalent of stability from the mean-field approximation, we calculated
whether or not firing rates remained at distinct levels for more consecutive time bins than
expected by chance. Take the proportion of time bins in the Up state to be p and in the
Down state to be 1 − p. Therefore, the binomial probability that consecutive time bins are in
the same state is p2 +(1 − p)2 and the probability that they differ is 2p(1 − p). The
probability of N total time bins having X0 or more consecutive pairs in the same state is,

(19)

We find that the probability of obtaining the observed number of consecutive time bins in
the same state is significantly smaller than expected if bins were independent, with
significance p < 10−308 (the smallest possible number in the double-precision floating
representation we use). For the Up state duration histogram, we only plot states that are
maintained for more than 200ms. Thus, networks remain in one state for more consecutive
time bins than expected by chance before spontaneously switching to the other state.

Avalanches
Spatiotemporal activity is characterized in terms of neuronal avalanches. By definition a
new avalanche is initiated when a background (external) input is the first input to drive a
neuron’s membrane potential above threshold. Additional avalanche members are any
neurons whose membrane potential first surpassed threshold as a result of a synaptic input
from an existing avalanche member.

The branching parameter is defined as the average number of neurons activated directly by
the initiating avalanche member (i.e., 2nd generation of the avalanche). This measure is
consistent with that used in other studies [7] and maintains a common metric for both large
and small avalanches.

We follow the method presented by Clauset et al. (2009) to statistically validate criticality.
Briefly, we find the maximum likelihood estimators (mles) under the assumption that
avalanche distributions follow either a power law or an exponential. We then generate
random power law and exponential distributions given the calculated mles to determine via
bootstrap the probability of obtaining a Kolmogoroff-Smirnov distance at least as great as
the sample. In all cases, we fail to reject the null hypothesis that avalanche distributions are
power law distributed (KS-test p-values: 0.46 and 0.29 for avalanche size and lifetime,
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respectively), but we do reject the null hypothesis that the distributions are exponentially
distributed (p<0.01 for avalanche size and lifetime).

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Bifurcations of mean-field approximation predict critical Up states and subcritical Down
states. (a) Stable fixed points are shown in black, unstable fixed points in red, and saddle
nodes in blue. Quiescent stable Down states are ubiquitous in the parameter region shown.
When synapses are sufficiently strong and vesicle recovery is sufficiently fast, a stable or
unstable high-activity Up state attractor emerges, as well as a saddle node at an intermediate
firing rate. (b) Analytic solution for the branching parameter of Up and Down states. Down
states are subcritical with a branching parameter near zero, while the Up states are critical
with a branching parameter near unity. Inset: 2D view of different regions of Up state

stability. Parameters: , C = 3 × 10−11 F, Vr = −70mV, θ = −50mV, we =
95pA, fe = 5Hz, τs = 5ms, τrp = 1ms, nr = 6, ns = 7.5, pr = 0.25
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Figure 2.
Simulated networks exhibit Up and Down state behavior. (a) Networks spontaneously
alternate between a quiescent spiking (Down state) and ~ 65 spikes/s (Up state). (b) The Up
state duration distribution is fitted well by an exponential (red line, τ = 1:9s). (c) At Down–
to–Up transitions, the branching parameter increases from zero and overshoots unity before
settling near unity; the firing rate likewise overshoots. (d) The branching parameter and
firing rate decay towards zero at Up–to–Down transitions. Same parameters as Figure 1, τR
= 100ms, win = 50pA; networks of 300 neurons.
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Figure 3.
Up states are critical, Down states are subcritical. (a) The frequency distribution of
avalanche size (number of neurons) in the Up state (blue) follows a power law with slope
-1.5 (dashed line), indicative of critical networks. In the Down state, the distribution is not
linear and few avalanches of size>10 occur, indicative of subcritical networks. (b) Similarly,
the distribution of avalanche lifetimes follows a power law with slope -2.0 (dashed line) in
the Up state (blue) but not the Down state (red). Same model parameters as Figure 2;
networks of 2500 neurons. (c) Avalanche size distributions for networks with AMPA and
NMDA excitatory currents and different amplitudes of inhibitory currents. The amplitude of
inhibitory to excitatory synapses (wItoE) is given in the legend as a fraction of the excitatory
current amplitude. At the highest levels of inhibition, power laws begin to break down near
system size. See Supplementary Data S2.3 for model details.
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Figure 4.
Criticality of Up states and subcriticality of Down states are robust to variations of crucial
model parameters. (a) Up state (blue) firing rates change slightly as τR and win are changed;
Down states (red) remain quiescent. (b) Up state durations vary widely with changes in these
parameters. (c) Up and Down state branching parameters remain near unity and zero,
respectively, over these parameter regions. (d) The Up state avalanche size critical exponent
remains near -1.5.
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