
Optimization Methods for Spiking Neurons and Networks

Alexander Russell,
Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD
21218 USA

Garrick Orchard,
Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD
21218 USA

Yi Dong,
Zanvyl-Krieger Mind Brain Institute and Department of Neuroscience, Johns Hopkins University,
Baltimore, MD 21218 USA

Ştefan Mihalaş,
Zanvyl-Krieger Mind Brain Institute and Department of Neuroscience, Johns Hopkins University,
Baltimore, MD 21218 USA

Ernst Niebur,
Zanvyl-Krieger Mind Brain Institute and Department of Neuroscience, Johns Hopkins University,
Baltimore, MD 21218 USA

Jonathan Tapson[Member, IEEE], and
Department of Electrical Engineering, University of Cape Town, Rondebosch 7701, South Africa

Ralph Etienne-Cummings[Senior Member, IEEE]
Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD
21218 USA
Alexander Russell: falexrussell@jhu.edu; Garrick Orchard: gorchard@jhu.edu; Yi Dong: fydong2@jhu.edu; Ştefan
Mihalaş: mihalas@jhu.edu; Ernst Niebur: nieburg@jhu.edu; Jonathan Tapson: jonathan.tapson@uct.ac.za; Ralph
Etienne-Cummings: retienneg@jhu.edu

Abstract
Spiking neurons and spiking neural circuits are finding uses in a multitude of tasks such as robotic
locomotion control, neuroprosthetics, visual sensory processing, and audition. The desired neural
output is achieved through the use of complex neuron models, or by combining multiple simple
neurons into a network. In either case, a means for configuring the neuron or neural circuit is
required. Manual manipulation of parameters is both time consuming and non-intuitive due to the
nonlinear relationship between parameters and the neuron’s output. The complexity rises even
further as the neurons are networked and the systems often become mathematically intractable. In
large circuits, the desired behavior and timing of action potential trains may be known but the
timing of the individual action potentials is unknown and unimportant, whereas in single neuron
systems the timing of individual action potentials is critical. In this paper, we automate the process
of finding parameters. To configure a single neuron we derive a maximum likelihood method for
configuring a neuron model, specifically the Mihalas–Niebur Neuron. Similarly, to configure
neural circuits, we show how we use genetic algorithms (GAs) to configure parameters for a
network of simple integrate and fire with adaptation neurons. The GA approach is demonstrated

© 2010 IEEE
Color versions of one or more of the figures in this paper are available online at http://ieeexplore.ieee.org.

NIH Public Access
Author Manuscript
IEEE Trans Neural Netw. Author manuscript; available in PMC 2011 December 1.

Published in final edited form as:
IEEE Trans Neural Netw. 2010 December ; 21(12): 1950–1962. doi:10.1109/TNN.2010.2083685.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://ieeexplore.ieee.org


both in software simulation and hardware implementation on a reconfigurable custom very large
scale integration chip.

Index Terms
Genetic algorithm; maximum likelihood; optimization; spiking neuron

I. Introduction
Since the seminal work of Hodgkin and Huxley [1] many neuronal models have been
developed varying both, in biological accuracy and complexity. Biologically faithful
models, such as the Hodgkin–Huxley [1] and Morris–Lecar [2] models, have complex sets
of equations governing the conductances of voltage-gated ion channels within the neuron
membrane. These models are used to understand neuron behavior at its most basic level.
Biological accuracy can be traded for computational efficiency and smaller parameter
spaces. The computationally simple integrate and fire model aims to capture the most basic
behavior of the neuron in a biophysical fashion, while the Izhikevich model [3] sacrifices
biophysically to achieve a large number of firing modalities in an efficient manner.
Modifications, such as introducing spike-induced currents [4] and a variable threshold [5],
can be made to the integrate and fire model to allow for more firing types (for a review see
Izhikivich [3]). The use of these models ranges from attempting to understand neural
behavior at its most fundamental level to modeling vision [6], [7], audition [8], neural
prosthetics [9], and robotic locomotion controllers [10]–[12].

Implementing these models as single neurons or as a circuit of multiple individual neurons
poses the problem of configuring model parameters in different contexts. For example, in
single neuron applications it is often desired to have as biologically faithful a model as
possible, resulting in a large number of parameters to configure for the single neuron. In
neural circuits, a simpler abstraction allows many more neurons to be instantiated and
assembled into networks, however, this results in many more synaptic weights or other
neural properties to be tuned. While the basic task for both single neurons and networks is
parameter estimation, the optimal approach to do so differs.

In the single neuron case, Paninski and Pillow [4] showed that with an appropriate neuron
model choice, it is possible to develop a maximum likelihood (ML) technique to determine
the optimal neuron parameters that match the model’s individual spike times to measured
ones. They showed that the log-likelihood function for the general integrate and fire (GIF)
neuron they used was concave in shape and consequently conventional optimization
methods can be used to solve for the parameters. In this paper, we extend Paninski and
Pillow’s method to the Mihalas–Niebur (M–N) neuron model [5]. This is a linear integrate
and fire model with a voltage-dependent threshold and spike induced currents. The varying
threshold allows the model to adopt more firing modalities than models with a fixed
threshold and spike-induced currents [5]. The differential equations of the model are very
similar to those of the basic leaky integrate and fire neuron, resulting in a computationally
efficient model.

Circuits of many individual neurons quickly become mathematically intractable and require
a different optimization approach. Genetic algorithms (GAs) provide a natural choice to
optimize these networks as they require no knowledge of the underlying network. They
simply seek to minimize a fitness function and their randomized searching methods ensure
that a large portion of the parameter space is searched. The rate of convergence has been a
problem when using GAs in the past. However, it was shown in [13] and in our previous

Russell et al. Page 2

IEEE Trans Neural Netw. Author manuscript; available in PMC 2011 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



work [14], [15] that the rate of convergence may be increased by using techniques such as
“behavioral memory” developed by de Garis [16] and “staged evolution” developed by
Lewis [17]. GAs have previously been used as learning rules for spiking neural networks
acting as classifiers [18], [19]. The work presented in this paper differs in that GAs are used
to configure the dynamics of pattern generator networks whose outputs are sustained
rhythmic patterns. This is discussed in Section III. The term “learning” is not used in this
paper, as we feel it is more suited to the updating of network parameters such that an input is
mapped to an output as in [20] and [21]. We view our work as more similar to biological
development in that we are not only tuning the weights of an established network, but also
determining the topology of the network and the properties of the individual neurons. To
make this distinction we use the term “configuration.”

While seemingly incompatible, ML methods and GAs are complementary to each other in
that ML allows configuration of neurons at a very fine level while GAs provide
configuration at a coarser granularity. This allows ML and GA to potentially be used
together to provide fine tuning of neural circuit outputs. First the GA could be used to
configure the overall network behavior, and then ML could be used to configure the
parameters that are necessary for an individual neuron within the circuit to spike at specified
times. This has parallels to neural development, e.g., during the development of the spinal
cord circuitry of the mouse, the neural circuits responsible for locomotion are developed in
two stages [22], with the second stage of development hypothesized to begin when the
motor neurons axons reach their muscle contacts and more information (in the form of target
derived signals) is available for development [23], [24].

The remainder of this paper is organized as follows. First, the likelihood equations for the
M–N neuron model are derived. Next, an example validating this method is shown. Section
III elaborates on our previous work in the application of GAs to configuring spiking neural
network parameters in software and in silico and for the configuring of network topologies.
As an example network, a central pattern generator (CPG), which is used for locomotion
control, is configured. The results of the application of the GA are then presented and
discussed.

II. ML Method for the M–N Neuron
A. M–N Neuron Model

The M–N model [5] is a linear integrate and fire model with a voltage-dependent threshold.
The equations defining the model are as follows:

(1)

where V(t) is the membrane potential, Θ(t) is the threshold, Θ∞ is the steady-state threshold
value, Ij are internal currents, Iext is the external current, G is the membrane conductance,
Vleak is the leak potential, and a controls the dependance of the threshold on the membrane
potential and b controls the dependence of the threshold on its current value. When V(t) =
Θ(t), a spike occurs and the system is updated using the following rules:

Russell et al. Page 3

IEEE Trans Neural Netw. Author manuscript; available in PMC 2011 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(2)

where t− is the moment just before the neuron fires and t+ is the moment immediately after
the neuron fires. Vreset is the membrane’s post-spike reset potential, Θreset is the minimum
allowable threshold potential. Rj and Aj specify the manner in which the spike-induced
currents are updated. For instance, if Rj is zero, then the current has a constant update
function, it is independent of the value of the current before the spike. Parameters Rj, Aj,
Vreset, and Θreset can be chosen freely providing Θreset > Vreset.

B. ML Estimation with the M–N Model
Given an input current Iext and a set of spike times t1, t2, …, tn, we wish to find the
parameters X = {G, Vreset, A1, A2, a, b, Θreset} which cause the model to spike at the desired
times. (The parameter space is reduced by assigning Θ∞ = Θreset and Vleak = Vreset). The
work done by Paninski and Pillow utilized the fact that the subthreshold dynamics of the
GIF neuron’s membrane potential are linear. For the M–N model, the (noiseless) membrane
potential can be computed analytically to be

(3)

Ij0 is the initial condition of current Ij over a given interspike interval. When t = 0 s, the
neuron has yet to spike, and consequently there are no post-spike currents and I j0 = 0. Once
the neuron spikes at time t, then the initial conditions of the post-spike currents at time t+ are
obtained using the update rule in (2). The post-spike currents evolve with time as

(4)

The noiseless threshold is computed as

(5)

where * denotes convolution. Θ0 is the value of the threshold value immediately after a
spike has occured. This value is determined by the update rule in (2). It is clear that both (3)
and (5) have linear dynamics. Thus if Gaussian noise is added to either equation, it will
assume a Gaussian probability density [25]. The threshold voltage is dependent on the value
of the membrane potential and, consequently, if noise is added to V(t), then Θ(t) will be a
random variable that depends on V(t). To avoid this dependence and simplify the

Russell et al. Page 4

IEEE Trans Neural Netw. Author manuscript; available in PMC 2011 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



calculations needed later, the noise is added into the threshold whose governing equation
becomes

(6)

where dWt is Gaussian noise with standard deviation 1.

Like Paninski, we will denote the induced Gaussian density as G(Θ(t)|X, Iext). The mean of
this density is the deterministic threshold shown in (5) and the variance is calculated to be

(7)

On a given interspike interval [ti−1, ti], the set

(8)

describes the set of all possible paths the threshold may take such that a spike occurs during
the time bin ti. Thus the likelihood that the neuron spikes at time ti, given that there was a
spike at time ti−1, is the probability of the event Θ(t) ∈ Ci, which is given by

(9)

When a spike occurs, the membrane potential and threshold are updated according to the
rules in (2).

The initial distribution of G(Θ (t)|X, Iext) over the inter-spike interval t ∈ [ti, ti+1] depends on
the final distribution of G(Θ (t)|X, Iext) at time t = ti. That is, the interspike interval over t ∈
[ti, ti+1] is conditionally dependent on the previous interspike interval t ∈ [ti−1, ti]. To ensure
conditional independence between interspike intervals, we make the assumption that the
probability of Θ is reset using the deterministic value of Θ given in (5). The resulting system
is a first-order nonhomogeneous Markov process and the likelihood of the entire spike train
can be written as the multiplication of the conditional probabilities for each individual spike
in the train [26]

(10)

Neural data is stochastic in nature. If multiple recordings are made from the same neuron,
under identical stimuli conditions, then there will be a slight variance between the recorded
spike trains. This variance can be explicitly accounted for if the the ML optimization is
performed across the multiple spike trains. Consider k spike trains recorded from the same
neuron. It can be assumed that their likelihoods are independent and so the total likelihood
across all the trials is simply

Russell et al. Page 5

IEEE Trans Neural Netw. Author manuscript; available in PMC 2011 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(11)

where Li j (tn,…, t1) is the likelihood of the jth spike train.

C. Implementation
An efficient method is needed to calculate the likelihoods used in (11). Given X and ti−1, we
can make use of the fact that (6) is an Ito stochastic differential equation and thus the
probability evolution of Θ (t) to ti satisfies the Fokker–Planck equation [27], [4]

(12)

where P is the probability of the threshold being above the neuron membrane potential (i.e.,
the probability that the neuron has not yet spiked). In the above, the first term describes the
drift of probability due to the subthreshold neuron dynamics presented in (1) and the second
term describes the outwards diffusion of probability due to the injected noise.

The boundary conditions for the system are

(13)

The first boundary condition describes the resetting of probability to the deterministic value
of the threshold. The second boundary condition is an absorbing condition that removes the
probability of the neuron spiking from the evolution. It is easy to see that the absorbing
boundary falls onto the neuron’s membrane potential, which is given in (3).

We can then calculate the likelihood of the neuron firing at a given time ti as follows [4].
The cumulative distribution of no spike occurring at time t is given by

(14)

Consequently

(15)

is the cumulative distribution of a spike occurring at time t. The probability density function
of a spike at time t is thus given by

(16)

Russell et al. Page 6

IEEE Trans Neural Netw. Author manuscript; available in PMC 2011 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



which is the likelihood of a spike occuring at time t. To calculate the likelihood for a given
spike train, we make use of the conditional independence of the probability of interspike
intervals and write

(17)

D. Finite Difference Method
The simplest method to solve the partial differential equation in (12) is through the use of
finite difference methods. Finite difference methods approximate the derivatives in the
partial differential equation with finite difference equations. Special care must be taken in
the discretization of the diffusion term. When the movement of probability due to drift is
greater than that through diffusion (i.e., the probability evolution has a high Peclet number),
then central difference methods become unstable. To circumvent this, upwind methods [28],
where the derivative is approximated by either backward or forward difference equations
depending on the direction of probability flow, were used at the cost of introducing
numerical diffusion into the solution. This diffusion can be reduced using high-order upwind
methods, however this also increases the size of the stencil needed. Central differences were
used on the diffusion term, and the Crank–Nicolson method [29] was used to discretize time.

E. Application of Optimization Method to Configure Tonic Bursting
Parameters for tonic bursting were taken from [5] and used to simulate 250 ms of neural
activity. The action potentials were extracted from the results and used as the desired spike
times for the optimization. The initial parameters of the neuron were chosen at random and
the results of the optimization are shown in Fig. 1(a). It can be seen that the predicted spike
times match the desired spike times almost perfectly. Fig. 1(b) and (c) shows the probability
evolution of the threshold. The resetting of the probability distribution after every spike
ensures conditional independence between interspike intervals and, as (7) predicts, the
variance of the distribution increases with time. The dotted line is the absorbing boundary
condition and is responsible for removing the probability that the neuron has already spiked
from the evolution. This removal of probability can be seen in Fig. 1(b) and (c), where the
probability density at any time t is zero below the boundary.

F. Application of Optimization Method to Real Neuron Data
To test the validity of the optimization method against real neural data, the ML method was
used to configure the M–N neuron to predict 1 s of firing activity from a regular spiking L5
pyramidal cell. The data was taken from Challenge A in the International Neuroinformatics
Coordinating Facility’s Quantitative Single-Neuron Modeling Challenge 2009 [30]. The
dataset consists of 13 voltage recordings from the neuron responding to identical current
stimuli. The spike times for each repetition were extracted by taking the times at which the
voltage traces crossed 0 mV. The optimization was then performed across all 13 spike trains
to account for the statistical nature inherent in neural data.

The results of the optimization along with the recorded spike times are shown in Fig. 2. On
average, the length of the predicted interspike intervals differed by the recorded interspike
intervals by 1.2 ms with a standard deviation of 1.12 ms. The average interspike interval of
the recorded data is 39.4 ms. The average error between the recorded and predicted
interspike intervals is thus 3%. This shows that the predicted spike times (bottom raster)
closely agree with the desired spike times (top raster). Furthermore, by optimizing the noise
between trials the variability between recordings has been included in the model. ML

Russell et al. Page 7

IEEE Trans Neural Netw. Author manuscript; available in PMC 2011 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



methods are a powerful tool for configuring the individual spike times of a neuron.
However, in certain circumstances it is more appropriate to use a network of neurons than a
single instantiation. In this scenario, the dynamics of the network quickly becomes
mathematically intractable and an ML-based method is no longer applicable. GAs provide a
good alternative as there is optimization based on the fitness of the network’s outputs
without requiring information of the underlying dynamics. We now show how GAs can be
used to configure both the parameters and topology of spiking neural networks.

III. Configuring Spiking Neural Networks Using GAs
GAs have previously been used to train both single neurons [31] and neural networks [18],
[19] to perform classification tasks. In the single neuron case, Northmore and Elias [31]
used GA to set the synaptic weights of a single in silico neuron so that it would respond to
coincident synaptic inputs. Oros et al. [18] used a GA to train a simulated two-wheeled
robot and spiking neural network to perform chemotaxis. Jin et al. [19] used a Pareto-based
multiobjective GA to optimize both classification performance and network connectivity of
a spiking neural network. In this instance, each neuron in the network was allowed to fire
just once per classification task. In [32], an alternative method to GAs is discussed for the
training of spiking neural networks to perform visual recognition tasks. The network
consisted of three layers. The first two layers are fixed and perform time-domain encoding
and passive filtering, respectively. Learning occurs in the third layer, in which the synaptic
weights and network connectivity are trained to recognize specific input classes. The
learning algorithm is an online-incremental algorithm, and the details are given in [33]. The
work presented in this paper differs in that it uses GAs to configure the internal state of the
spiking neural network such that it behaves as a pattern generator—a network able to
produce sustained rhythmic outputs [34].

The cyclic nature of a pattern generator’s outputs require a different training approach to
that of spiking neural networks performing classification. In a classification network, the
internal dynamics of the network are unimportant as long as the decision neuron fires
correctly. In a pattern generator, the network outputs are a continuous periodic pattern of
activation whose dynamics is important at all times. The neurons forming a pattern
generator network fall into two classes: oscillator neurons and motor neurons. Oscillator
neurons set the base frequency of the network using recurrent connections. The periodicity
of the motor neurons’ outputs is controlled by the oscillator neurons. The summation of
multiple motor neuron outputs generates the temporal pattern of activation of a robot’s
actuators. This poses three design questions. What should the parameters be such that the
oscillator neurons fire at the correct frequency? How many motor neurons are needed to
realize a specific motor pattern? And, how should these neurons be connected to the
oscillator neurons? In [14] and [15], the authors showed how GAs can be used to configure
pattern generator networks. The following section presents those results in a more complete
framework with special emphasis on answering the above questions and on the difficulties
of configuring in silico networks. Specifically, we focus on the configuration of CPGs for
bipedal robot locomotion.

A. CPGs
The CPG is a network of neurons able to endogenously produce sustained rhythmic outputs
[34]. The outputs of CPGs are responsible for most rhythmic motor patterns such as
walking, flying, swimming, and breathing. These networks have been used to control snake-
like robots [11], [36], quadrupedal robots, hexapedal robots [17], [12], [37], [38], and
bipedal robots [10], [35], [13], [14]. The network discussed in this paper is the canonical
network developed by Lewis et al. [35] for the control of a bipedal robot and is shown in
Fig. 3. To generate a successful gait, the hips should burst with a duty cycle of 50% and the

Russell et al. Page 8

IEEE Trans Neural Netw. Author manuscript; available in PMC 2011 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



knees must be 90° out of phase with the hips [35]. Both the software and hardware
implementations of CPGs discussed here are comprised of integrate and fire with adaptation
(IFA) neurons, although the actual model differs slightly between hardware and software as
discussed in the relevant sections. IFA neurons were used as they are computationally
efficient and have enough functionality to implement the desired networks. However, any
neuron model that allows for adaptation can be used. The M–N neuron is a good alternative,
as it is computationally efficient and its wide range of firing modalities (including
adaptation) allows for greater flexibly during network design.

B. Description of the GA
Rate of convergence cannot be guaranteed when using a GA and is therefore of particular
concern. To improve the rate of convergence, the concepts of behavioral memory [16] and
staged evolution [17] were used. Behavioral memory entails guiding the search to the
correct parameter space using two fitness functions: the first is more general and easily
satisfied, while the second is more specific and used to fine-tune the solution. Staged
evolution builds on this concept and involves breaking the problem into stages that are
solved sequentially, thus guiding the algorithm toward the final solution. Staged evolution
can increase the probability of finding a solution. Consider a CPG where the optimization
process can be divided into finding neuron parameters and finding interneuron weights.
There is a strong interdependence between these two parameter sets and thus both parameter
sets must be correctly configured for the network to work properly. Furthermore interneuron
parameters which may work for one set of neuron parameters may not work for another.

Let X be the random variable of correctly choosing a set of neuron parameters so that the
CPG functions correctly and Y be the random variable of choosing interneuron weights so
that the network functions correctly. The probability of choosing correct neuron parameters
is P(X), the probability of choosing correct synaptic weights given a set of neuron
parameters is P(Y|X), and the probability of simultaneously choosing both the correct neuron
parameters and correct synaptic weights is P(X∩Y).

Consider staged evolution. The probability of choosing the correct neuron parameters in n
attempts is Pn(X) = 1 −(1 − P(X))n. Given the correct neuron parameters, finding the
interneuron weights in a further n attempts is Pn(Y |X) = 1− (1− P(Y|X))n. The probability of
finding a correct solution using staged evolution in a total of 2n trials is thus

(18)

Now consider non-staged evolution. Again, using a total of 2n trials, the probability of
finding a correct solution is

(19)

but P(X∩Y) = P(Y|X)P(X) and so

(20)

The difference in probability between the two methods is

Russell et al. Page 9

IEEE Trans Neural Netw. Author manuscript; available in PMC 2011 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(21)

This difference is shown in Fig. 4 for P(X), P(Y |X) < 0.1, and n = 100. Note that this

difference is always positive, indicating that  in this region.
This shows the advantage of using staged evolution when P(X) and P(Y |X) are both small (a
reasonable assumption in the case of a CPG). Thus staged evolution is more likely to
converge quickly than non-staged evolution for small probabilities. Furthermore, for the
CPG case, staged evolution saves time not only because fewer trial solutions need to be
investigated, but also because trial solutions for individual neurons (stage 1) can be
evaluated faster than those for an entire network (stage 2 or the non-staged approach). The
reasons for this are discussed in Section III-D.2. In the work presented below, three stages of
optimization are used, however, the above is easily extended to this scenario.

Inada and Ishii [13] used a GA and a similar staged evolution approach to optimize
parameters for a CPG-based controller (constructed from non-spiking neurons) of ankle,
knee, hip, and pitching of the waist movements in a simulated biped. More recently, some of
us used GAs to configure spiking neural networks, both in software and in silico, to control
a biped robot [14], [15].

The GA used was based on FBGAMIN, a single goal optimizer, which falls into the class of
an adaptive mutation breeder algorithm [39]. The adaptive mutation ensures that the
mutation rate is always optimal, while elitism ensures the best solutions from each
generation propagates through to the next generation thus guaranteeing that solutions remain
the same or improve through generations. Breeder algorithms are well suited for the
optimization of real-valued functions, and the adaptive mutation characteristic algorithm
utilizes a simple feedback loop within the algorithm to ensure that the mutation rate is
always optimal [14], [15].

Staged evolution was performed in three stages. In the first stage, each neuron was
individually configured to spike at a specified frequency of 100 Hz with no interneuron
connections present. In the second stage, interneuron connections were introduced and
optimized to obtain the specified frequency and duty cycle. In the third and final stage,
additional inhibitory coupling is introduced to control phase differences between the
oscillator and motor neurons. The order in which interneuron connections were introduced
differs between hardware and software as discussed in the respective sections. Solutions
were stored in a lookup table which was used as a starting point for obtaining new solutions.
The fitness functions for the three stages are given as

(22)

In the above equations, f refers to the spike frequency of a single isolated neuron. BL refers
to “Burst Length” and is defined as the period over which a neuron fires. The period of
oscillation of the half-centered oscillator is given by the sum of burst lengths for C PG1 and
C PG2. By varying the ratio of B L(C PG1) to B L(C PG2), the duty cycle of oscillation can

Russell et al. Page 10

IEEE Trans Neural Netw. Author manuscript; available in PMC 2011 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



be varied. φ is used to denote phase difference between coupled neurons. In the fitness
equation for stage 3, w is set to greater than 1 to increase the importance of frequency in the
fitness function. α is a scaling factor used to convert the phase error to a magnitude similar
to that of frequency and burst length. V is a validity term which is set arbitrarily large when
invalid solutions are found. Invalid solutions are defined differently for each application and
details of V are discussed in the relevant sections. During parameter configuration, the target
frequencies of oscillation were chosen to lie between 1 and 3 Hz, which is approximately the
natural locomotion frequency of animals with limb lengths of 30 cm (the leg length of the
biped robot used to test the CPG outputs).

For all software implemented optimizations, the GA was configured with a population size
of 200 where 1 chromosome was the suggested trial solution and the remaining 199
chromosomes were generated by multiplying each gene in the suggested solution by a
uniformly distributed random number between 0 and 5. This ensured that the initial
population searched a wide parameter space. Such a large population size was facilitated by
the fact that simulations can run faster than real time. When the GA was used to optimize
the parameters of in silico networks, it was configured in a similar manner, but with a
reduced population size of 100. The trial solution for the first stage of optimization was
obtained from trial and error and allowed for a single neuron to spike anywhere between 10
and 200 Hz. The trial solutions for the second and third stages of optimization were the
results of the first and second stages, respectively.

C. Evolving CPG Parameters in Software
1) Network Description—The IFA neurons used in software simulations have a slight
modification on the adaptation term. This modification causes the adaptation current to
cease if the neuron does not spike for a specified period of time. The equations describing
the ith neuron in a network are given by

(23)

where V is the membrane potential, Ik→i is the coupling current from neuron k to i, a is the
tonic input, and b is the membrane impedance. g, e, d, and τ describe the adaptation. Vreset is
the reset potential of the neuron, tf ire is the time since the neuron last fired, and tthresh is the
time a neuron can go without firing before its adaptation is reset.

Using this model, which has six parameters per neuron, the 12-neuron network of Fig. 3 will
have 108 parameters, including the 36 interneuron connection weights. A key to
successfully configuring these parameters is to identify manners in which the parameter
space can be reduced. If we exploit symmetries such as allowing similar neuron types (e.g.,
central oscillator neurons, left/right hip motor neurons, and left/right knee motor neurons) to
have similar properties, then the dimensionality of the network can be halved. The
dimensionality of the problem can be further reduced if additional constraints are placed on
the network (e.g., connections forming the main oscillator neurons are symmetric, left and
right hips are 180° out of phase with each other and the knees are 90° out of phase). These
constraints reduce the network in Fig. 3 to that in Fig. 5. In software, the fitness functions of
(22) are simplified because errBL (CPG1) = errBL (CPG2) due to symmetry and the
assumption of a 180° phase shift between left and right. The resulting simplified network is

Russell et al. Page 11

IEEE Trans Neural Netw. Author manuscript; available in PMC 2011 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



shown in Fig. 5. The constraints of symmetry can be relaxed later to find other network
operation modes, however, careful choice of free variables as well as the use of staged
evolution for more complicated modes is critical to good convergence.

2) Optimization—Hierarchal evolution was implemented on the reduced canonical
network of Fig. 5(a) by first configuring individual neurons to spike at 100 Hz. Then mutual
inhibition between CPG1 and CPG2 was introduced and the walking frequency parameters
were optimized for oscillation frequencies from 0.5 to 3 Hz in steps of 0.25 Hz while
maintaining a duty cycle of 50% for each neuron. Solutions that did not oscillate were
marked as invalid and assigned an arbitrarily large error using the validity term. The results
from the previous frequency evolution were used to seed the evolution of the next walking
frequency. The following parameters were optimized in the second stage of evolution:

{ 
and ICPG2-CPG1}. Once the parameters to allow walking at various frequencies were
evolved, feedforward inhibition was introduced from CPG1 to MN1 and from CPG2 to
MN2. In this stage, the validity term was used to eliminate solutions in which motor neurons
begin firing less than 180° out of phase with the inhibiting oscillator neuron. The phase
relationship between the hips and knees was configured during this stage. Parameters were
found to cause phase shifts between 0° and 90°. Using the above method, parameters were
found to walk at each specific frequency and gait (hip–knee phase relationship).

3) Implementation—Network parameters were obtained through implementation of the
GA and neural network in MATLAB (The Mathworks Inc, Natick, MA, USA). Once the
parameters had been determined, the network was implemented on a dsPIC30f4011
(Microchip, Chandler, AZ, USA) microcontroller and the network outputs were used to
control servo motors on the Redbot [40] bipedal robot (Fig. 13). The servo motor angles
were measured during operation and fed back to the PC to verify network operation. The
system is capable of running without a PC, but inclusion of the PC allows updating of
network parameters from a previously generated lookup table for gait modification on the
fly.

D. Evolving CPG Parameters In Silico
Computational limitations restrict the design of large real-time neural networks in software.
It is desirable to take advantage of the real-time parallel nature of analog very large scale
integration implementations. By decreasing the membrane capacitances used in the silicon
neurons, it is even possible to run these large networks in faster than real time. Furthermore,
these circuits are of low power and provide an important processing paradigm for the future.
Unfortunately, while in silico implementation solves some problems, it introduces others.
Previously, in software simulations we made use of network symmetry to reduce the
parameter space. Configuring silicon neurons increases the parameter space because the
assumption of symmetry no longer holds due to the “fixed pattern” noise introduced by
transistor mismatch. An optimal set of parameters for a particular neuron will not
necessarily be optimal for another neuron due to this noise. To demonstrate the use of GA
on networks implemented in silico, we used a reconfigurable custom-designed chip to
emulate a CPG network [40].

1) Network Description—Once again, IFA neurons were used. A circuit diagram of a
silicon neuron is shown in Fig. 6. Adaptation was implemented externally to the chip using
self feedback through an RC delay. The limited number of external inputs (four) restricts us
to four IFA neurons. We implemented the reduced canonical network of Fig. 5(b). It is a
slight modification of Fig. 5(a) in that it has additional feedback from the motor neurons to
increase robustness in the face of electrical noise.

Russell et al. Page 12

IEEE Trans Neural Netw. Author manuscript; available in PMC 2011 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



2) Optimization—In order for the operation of the in silico neural network to be accurately
simulated, special attention must be given to the effects of noise, transistor mismatch, and
temperature of the circuit. This is not trivial and so parameters for the in silico network were
found by applying the GA directly to the silicon network during optimization. This presents
additional complexity, as the integrated circuit containing the spiking neural network needs
to not only be interfaced with the host computer running the GA in real time but time must
be allowed for the network to settle to a steady state when switching parameters and a
possible solution must be evaluated over multiple periods of oscillation to ensure that it is a
stable solution. In small networks, this may result in the optimization process taking longer
than if an equivalent size network was simulated. However, for larger networks this in silico
optimization will be substantially faster than the simulated version due to the parallel nature
of the silicon network.

The fitness functions remain unchanged except for the validity term, but the interneuron
connections implemented in each stage differ from software implementations. In the first
stage of evolution, no connections are present, as was the case in software. The in silico
neurons emit a fixed width pulse after every spike. If the interspike interval of the spikes of
a single neuron are too small, then it is possible that the neuron will fire again before the
output pulse for the previous spike has ended. If this occurs, then multiple spikes may be
hidden under a single output envelope and they will be recorded as a single spike. The
validity term was used to eliminate solutions in which this occurred. The minimum pulse
width of a spike was constrained by the need to reliably detect each spike by the
microcontroller.

In the second stage the CPG1/MN1 and CPG2/MN2, mutual inhibition is implemented to
form two half-centered oscillators. These are optimized in parallel using f itness2 to obtain
specified frequency and duty cycle. The validity term was used to eliminate solutions which
did not oscillate or in which bursts of less than five spikes occurred. The target frequency for
the second stage was empirically chosen to be 1.5 times that of the final network because a
reduction in frequency is expected during stage 3 of evolution. (The two oscillators are
coupled together using inhibitory connections. Thus when coupled, additional time must be
allowed from the neurons to recover from hyperpolarization and the network will slow
down). In the third stage, the CPG1/CPG2 mutual inhibition is implemented and optimized
for 180° phase shift between left and right sides. This connection also slows down the
overall frequency of the network.

3) Implementation—As shown in Fig. 8, the dsPIC30f4011 was used to interface the PC
and the silicon chip. The PC communicates network parameters with the microcontroller,
which configures the silicon chip appropriately. The microcontroller records the spike times
and communicates them back to the host PC, which runs the GA.

IV. Configuring Network Topology
Thus far we have only controlled the duty cycle, frequency, and phase of the network, but
did not have any control over the actual shape of the joint angle profiles. The required shape
of the joint angle profile is not always specified, but for cases in which it is known, such as
when we want to impart human walking gaits to a robotic biped [41], an optional fourth
stage of software optimization was developed. The complexity of achievable joint angle
profiles is determined by the network topology. Simple sinusoidal joint angle pro-files may
be possible with a much simpler network than is required to mimic human joint angle
profiles. Having a different network for each case is desirable to ensure that additional
neurons are not simulated unnecessarily. To achieve this, six feed forward neurons were
initially added per joint (see Fig. 7). The motor neuron parameters were optimized to

Russell et al. Page 13

IEEE Trans Neural Netw. Author manuscript; available in PMC 2011 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



minimize a fitness function which was the mean square error between the resulting and
desired joint angle profiles. The summation kernel consisted of a weighted summation of the
motor neuron’s outputs. The sign and weight of each neuron’s output were determined
during optimization. In the final stage, a loop ran in which the motor neuron with the
smallest relative weighting in the summation kernel was removed until no more motor
neurons could be removed without crossing above the specified error threshold, which was
set to (15°)2. The network was then re-optimized without the removed neurons.

V. Results
A. Evolving CPG Network Parameters in Software

Parameters were easily found to cause the single neurons to fire at the desired 100 Hz. Fig.
9(a) shows the results of the second stage of optimization where the simulated network was
configured to obtain walking frequencies from 0.5 to 3.5 Hz in 0.25-Hz increments. This
stage of evolution converged to a solution within three generations for all target frequencies.
The task was significantly simplified by imposing the constraint that the neurons in the
central oscillator all have identical parameters due to symmetry. Fig. 9(b)–(d) shows the
results of the third stage of optimization where parameters were found to cause phase shifts
of 15° to 90°, in 15° increments, across all walking frequencies. Fig. 9(b) shows that
parameters could accurately be found to cause all desired phase shifts at a walking
frequency of 1 Hz. Fig. 9(c) and (d) shows that the desired phase shifts (45° and 90° in this
case) could be found to an accuracy of within 1° across all walking frequences. Stage 3 of
evolution also converged quickly, usually within two generations, because only a relatively
simple hip–knee connection is optimized in this stage.

Note that, due to the 180° phase shift between left and right, angles above 90° can be
obtained by simply swapping the outputs for the left and right knees. In [14], we used this
network to control walking in a bipedal robot with hip support. The joint angle profiles
obtained from the network and used to control the biped are shown in Fig. 12(a).

B. Evolving CPG Parameters In Silico
The silicon CPG was given a target walking frequency of 2 Hz with duty cycle of 70% and
180° phase shift between the left and right half-centered oscillator. Fig. 10 shows how the
frequency, phase, and duty cycle evolve during optimization to successfully obtain the
desired parameters. Note that the target frequency for the second stage is 3 Hz. This
decreases and is optimized for 2 Hz during the final stage of optimization.

C. Evolving Network Topology
Human walking data was obtained and the GA was used to evolve the parameters for the
feedforward motor neurons as well as control the number of neurons required by the
network to mimic the human joint angle profile (Fig. 11). The GA successfully configured
the network to obtain human walking joint angle profiles and was able to achieve this with
only 7 of original 12 motor neurons made available per joint. The relatively simple shape of
the hip profiles required only three motor neurons, while the more complex shape of the
knee angles required four motor neurons to stay below the specified maximum mean square
error of (15°)2. The final fitness of the hip network was (9.5°)2 and the final fitness of the
knee network was (13.2°)2. The resulting joint angle profiles are shown in Fig. 12(b) and
(c). Fig. 13 shows the robot walking with this controller.

Russell et al. Page 14

IEEE Trans Neural Netw. Author manuscript; available in PMC 2011 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



VI. Discussion
We have demonstrated how ML methods and GAs can be used to configure parameters of
spiking neurons instantiated as both single models and in circuits. Specifically, we extended
the work done by Paninski and Pillow [4] to the more powerful M–N neuron model. Kumar
et al. [42] recently described a parameter estimation method for the Izikevich neuron, which
like the M–N model is able to reproduce almost all spiking and bursting modalities of
cortical neurons. Our work differs in that the M–N model is biophysically more plausible
[5], its dynamics are simpler to understand, it is simpler to implement in complimentary
metal-oxide-semiconductor [43], and it can be used in event-based simulations [5].
Furthermore, the stochastic nature of the ML method accounts for the statistical variability
of spike timings, something not accounted for in Kumar et al. [42] method. In regards to
neural circuits, we used a GA with staged evolution and behavioral memory to configure a
CPG neural circuit in both software and hardware to produce the hip flexor and extensor
signals required for a typical bipedal gait. This is just an example of how GAs can be used to
configure neural circuits, and the approach can easily be adapted for use on other neural
circuits. Our example allows the user to specify a walking frequency and phase shift
between neurons in a known circuit topology or to use the GA to configure basic circuit
topology and parameters for a given gait. The rate of convergence of the GA was dominated
by the time necessary to simulate or record circuit behavior. The time taken to evaluate the
network output and generate new solutions was negligible by comparison. This suggests that
GAs are well suited to configuring parameters in neural circuits which operate at high
frequencies.

In the methods section, a GA was used to configure an individual neuron to have an average
spike rate of 100 Hz. However, if GAs were used to configure parameters for exact spike
times in a single neuron, what fitness function would be appropriate? A spike distance-based
metric such as that given by Victor and Purpura [44] is a choice, however, the penalties
associated with missing or inaccurate spike times are almost arbitrary in meaning and the
method cannot take into account the intrinsic variability in biological action potential times.
ML methods, however, provide a meaningful measure of spike timings and easily take into
account the statistical variability of spike times. Furthermore, ML and GA can work together
to provide greater tuning of neural circuit outputs. Consider the canonical network shown in
Fig. 3. Suppose the spike timings of MN1 were known. GA could be used to configure the
behavior of the oscillator neurons CPG1–CPG4 and ML could then be used to tune the
parameters of MN1 and the synaptic connection between CPG1 and MN1. The extension to
the ML method is minimal and simply requires an additional current term to be added to the
membrane potential of the neuron to account for the effect of CPG1 on MN1.

VII. Conclusion
Manual configuration of spiking neuron models and networks is a time-consuming task
requiring an intricate knowledge of the system being configured. As the complexity of the
model or neural circuit rises, it becomes increasingly unintuitive and difficult to control. The
work presented in this paper illustrates two automated configuration methods tailored to suit
the different demands of configuring individual spiking neuron models and spiking neural
circuits.

Acknowledgments
This work was supported in part by the Defense Advanced Research Projects Agency Revolutionizing Prosthetics
2009 Program and NIH-NEI 5R01EY016281-02.

Russell et al. Page 15

IEEE Trans Neural Netw. Author manuscript; available in PMC 2011 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



References
1. Hodgkin AL, Huxley AF. A quantitative description of membrane current and its application to

conduction and excitation in nerve. J Physiol. Aug; 1952 117(4):500–544. [PubMed: 12991237]
2. Moris C, Lecar H. Voltage oscillations in the barnacle giant muscle fiber. J Biophys. Jul; 1981

35(1):193–213.
3. Izhikevich E. Which neuron model to use? IEEE Trans Neural Netw. Sep; 2004 15(5):1036–1070.
4. Paninski L, Pillow JW, Simoncelli EP. Maximum likelihood estimation of a stochastic integrate-

and-fire neural encoding model. Neural Comput. Dec; 2004 16(12):2533–2561. [PubMed:
15516273]

5. Mihalas S, Niebur E. A generalized linear integrate-and-fire neural model produces diverse spiking
behaviors. Neural Comput. Mar; 2009 21(3):704–718. [PubMed: 18928368]

6. Wysoski SG, Benuskova L, Kasabov N. Fast and adaptive network of spiking neurons for multi-
view visual pattern recognition. Neurocomputing. Aug; 2008 71(13–15):2563–2575.

7. Folowosele, FO.; Vogelstein, RJ.; Etienne-Cummings, R. Spike-based MAX network for nonlinear
pooling in hierarchical vision processing. Proc. IEEE Conf. Biomed. Circuits Syst; Montreal, QC,
Canada. Nov. 2007; p. 79-82.

8. Chan, V.; van Schaik, A.; Liu, S. Spike response properties of an AER EAR. Proc. IEEE Int. Symp.
Circuits Syst; Island of Kos, Greece. May 2006; p. 859-862.

9. Bensmaia, S.; Kim, SS.; Sripati, A.; Vogelstein, RJ. Conveying tactile feedback using a model of
mechanotransduction. Proc. IEEE Conf. Biomed. Circuits Syst; Baltimore, MD. Nov. 2008; p.
137-140.

10. Lewis MA, Etienne-Cummings R, Hartmann MJ, Xu ZR, Cohen AH. An in silico central pattern
generator: Silicon oscillator, coupling, entrainment, and physical computation. Biol Cybern. Feb;
2003 88(2):137–151. [PubMed: 12567228]

11. Cymbalyukand G, Patel G, Calabrese R, DeWeerth S, Cohen A. Modeling alternation to synchrony
with inhibitory coupling: A VLSI approach. Neural Comput. Oct; 2000 12(10):2259–2278.
[PubMed: 11032033]

12. Arena P, Fortuna L, Frasca M, Patane L. A CNN-based chip for robot locomotion control. IEEE
Trans Circuits Syst I. Sep; 2005 52(9):1862–1871.

13. Inada H, Ishii K. Bipedal walk using a central pattern generator. Int Congr Ser. Aug.2004
1269:185–188.

14. Russell, A.; Orchard, G.; Etienne-Cummings, R. Configuring of spiking central pattern generator
networks for bipedal walking using genetic algorithms. Proc. IEEE Int. Symp. Circuits Syst; New
Orleans, LA. May 2007; p. 1525-1528.

15. Russell, AF.; Orchard, G.; Mazurek, K.; Tenore, F.; Etienne-Cummings, R. Configuring silicon
neural networks using genetic algorithms. Proc. IEEE Int. Symp. Circuits Syst; Seattle, WA. May
2008; p. 1048-1051.

16. de Garis, H. Genetic programming: Modular neural evolution for Darwin machines. Proc. IEEE
Int. Joint. Conf. Neural Netw; Washington D.C.. Jan. 1990; p. 511-516.

17. Lewis, MA.; Fagg, AH.; Solidium, A. Genetic programming approach to the construction of a
neural network for control of a walking robot. Proc. IEEE Int. Conf. Robot. Autom; Nice, France.
May 1992; p. 2618-2623.

18. Oros, N.; Steuber, V.; Davey, N.; Canamero, L.; Adams, R. Evolution of bilateral symmetry in
agents controlled by spiking neural networks. Proc. IEEE Symp. Artif. Life; Nashville, TN. Apr.
2009; p. 116-123.

19. Jin, Y.; Wen, R.; Sendhoff, B. Evolutionary multiobjective optimization of spiking neural
networks. Proc. 17th Int. Conf. Artif. Neural Netw; Porto, Portugal. Sep. 2007; p. 370-379.

20. Arena P, Fortuna L, Frasca M, Patané L. Learning anticipation via spiking networks: Application
to navigation control. IEEE Trans Neural Netw. Feb; 2009 20(2):202–216. [PubMed: 19150797]

21. Rowcliffe P, Feng J. Training spiking neuronal networks with applications in engineering tasks.
IEEE Trans Neural Netw. Sep; 2008 19(9):1626–1640. [PubMed: 18779093]

Russell et al. Page 16

IEEE Trans Neural Netw. Author manuscript; available in PMC 2011 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



22. Ladle DR, Pecho-Vrieseling E, Arber S. Assembly of motor circuits in the spinal cord: Driven to
function by genetic and experience-dependent mechanisms. Neuron. Oct; 2007 56(2):270–283.
[PubMed: 17964245]

23. Hanson MG, Landmesser LT. Characterization of the circuits that generate spontaneous episodes
of activity in the early embryonic mouse spinal cord. J Neurosci. Jan; 2003 23(2):587–600.
[PubMed: 12533619]

24. Milner LD, Landmesser LT. Cholinergic and GABAergic inputs drive patterned spontaneous
motoneuron activity before target contact. J Neurosci. Apr; 1999 19(8):3007–3022. [PubMed:
10191318]

25. Karlin, S.; Taylor, H. A Second Course in Stochastic Processes. New York: Academic; 1981.
26. Tapson J, Jin C, van Schaik A, Etienne-Cummings R. A first-order nonhomogeneous Markov

model for the response of spiking neurons stimulated by small phase-continuous signals. Neural
Comput. Jun; 2009 21(6):1554–1588. [PubMed: 19191600]

27. Gardiner, CW. Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences.
Berlin, Germany: Springer-Verlag; 1985.

28. Patankar, SV. Numerical Heat Transfer and Fluid Flow. New York: Taylor & Francis; 1980.
29. Crank J, Nicolson P. A practical method for numerical evaluation of solutions of partial differential

equations of the heat-conduction type. Math Proc Cambridge Philos Soc. 1947; 43(1):50–67.
30. Gerstner W, Naud R. How good are neuron models? Science. Oct; 2009 326(5951):379–380.

[PubMed: 19833951]
31. Northmore, DPM.; Elias, JG. Evolving synaptic connections for a silicon neuromorph. Proc. 1st

IEEE Conf. Evol. Comput; Orlando, FL. Jun. 1994; p. 753-758.
32. Kasabov N. Evolving intelligence in humans and machines: Integrative evolving connectionist

systems approach. IEEE Comput Intell Mag. Aug; 2008 3(3):23–37.
33. Wysoski, S.; Benuskova, L.; Kasabov, N. On-line learning with structural adaptation in a network

of spiking neurons for visual pattern recognition. Proc. ICANN; Athens, Greece. Sep. 2006; p.
61-70.

34. Stein, PSG.; Grillner, S.; Selverston, AI.; Stuart, DG. Neurons Networks and Motor Behavior.
Cambridge, MA: MIT Press; 1997.

35. Lewis, MA.; Tenore, F.; Etienne-Cummings, R. CPG design using inhibitory networks. Proc. IEEE
Int. Conf. Robot. Autom; Barcelona, Spain. Apr. 2005; p. 3682-3687.

36. Lu, Z.; Ma, S.; Li, B.; Wang, Y. Serpentine locomotion of a snakelike robot controlled by cyclic
inhibitory CPG model. Proc. IEEE Int. Conf. Intell. Robots Syst; Sha Tin, Hong Kong, China.
Aug. 2005; p. 96-101.

37. Chiel HJ, Beer RD, Gallagher JC. Evolution and analysis of model CPGs for walking: I.
Dynamical modules. J Comput Neurosci. Sep.–Oct; 1999 7(2):99–118. [PubMed: 10515250]

38. Still, S.; Schöllkopf, B.; Hepp, K.; Douglas, RJ. Four-legged walking gait control using a
neuromorphic chip interfaced to a support vector learning algorithm; Whistler, BC, Canada: Dec.
2000 p. 741-747.

39. Goldberg, D. Genetic Algorithms in Search Optimization and Machine Learning. Reading, MA:
Addison-Wesley; 1989.

40. Tenore, F.; Etienne-Cummings, R.; Lewis, MA. A programmable array of silicon neurons for the
control of legged locomotion. Proc. IEEE Int. Symp. Circuits Syst; Vancouver, BC, Canada. May
2004; p. 349-352.

41. Vaughan, CL. Dynamics of Human Gait. Champaign, IL: Human Kinetic; 1992.
42. Kumar, G.; Aggarwal, V.; Thakor, NV.; Schieber, MH.; Kothare, MV. Optimal parameter

estimation of the Izhikevich single neuron model using experimental inter-spike interval (ISI) data.
Proc. Amer. Control Conf; Baltimore, MD. Jul. 2010; p. 3586-3591.

43. Folowosele, F.; Hamilton, TJ.; Harrison, A.; Cassidy, A.; Andreou, AG.; Mihalas, S.; Niebur, E.;
Etienne-Cummings, R. A switched capacitor implementation of the generalized linear integrate-
and-fire neuron. Proc. IEEE Int. Symp. Circuits Syst; Tapei, Taiwan. May 2009; p. 2149-2152.

44. Victor JD, Purpura KP. Nature and precision of temporal coding in visual cortex: A metric-space
analysis. J Neurophys. Aug; 1996 76(2):1310–1326.

Russell et al. Page 17

IEEE Trans Neural Netw. Author manuscript; available in PMC 2011 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Biographies

Alexander Russell received the B.Sc. degree in mechatronic engineering from the
University of Cape Town, Rondebosch, South Africa, in 2006, and the M.S.E degree in
electrical engineering from Johns Hopkins University, Baltimore, MD, in 2009. Currently he
is pursuing the Ph.D. degree at the Computational Sensory-Motor Systems Laboratory,
Johns Hopkins University.

His current research interests include optimization methods for spiking neurons and
networks, mixed-signal very large scale integration design, and biofidelic sensory encoding
algorithms.

Mr. Russell was a recipient of the Klaus-Jurgen Bathe Scholarship as well as the Manuel
and Luby Washkansky Postgraduate Scholarship from the University of Cape Town, and the
Paul V. Renoff Fellowship from Johns Hopkins University.

Garrick Orchard received the B.S. degree in electrical engineering from the University of
Cape Town, Rondebosch, South Africa, and the M.S.E. degree in electrical engineering
from Johns Hopkins University, Baltimore, MD, in 2006 and 2009, respectively.

He is currently a member of the Computational Sensory-Motor Systems Laboratory at Johns
Hopkins University. His current research interests include mixed-signal very large scale
integration design and intelligent compact sensors for mobile robotics.

Yi Dong received the B.S. degree in physics from Nanjing University, Nanjing, China, in
2003, and the Masters degree in physics from Johns Hopkins University, Baltimore, MD, in
2005. Currently he is pursuing the Ph.D. degree at the Computational Neuroscience
Laboratory, Neuroscience Department, Johns Hopkins University, led by Dr. E. Niebur.

Russell et al. Page 18

IEEE Trans Neural Netw. Author manuscript; available in PMC 2011 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



His current research interests include high-performance computation and the brain.

Ştefan Mihalaş received the B.S. degree in physics and the M.S. degree in differential
geometry from West University, Timisoara, Romania, and the Ph.D. degree in physics from
the California Institute of Technology, Pasadena.

He is currently a Post-Doctoral Fellow in computational neuroscience at Johns Hopkins
University, Baltimore, MD.

Ernst Niebur received the Graduate degree and the M.S. degree (Diplom Physiker) from
the Universität Dortmund, Dortmund, Germany. He received the Post-Graduate Diploma in
artificial intelligence from the Swiss Federal Institute of Technology, Zurich, Switzerland,
and the Ph.D. degree (Dr és sciences) in physics from the Universitè de Lausanne,
Lausanne, Switzerland. His dissertation topic was computer simulation of the nervous
system of the nematode C. elegans.

He was a Research Fellow and a Senior Research Fellow at the California Institute of
Technology, Pasadena, and an Adjunct Professor at Queensland University of Technology,
Brisbane, Australia. He is currently an Associate Professor of neurosciences in the School of
Medicine and of Brain and Psychological Sciences, Krieger School of Arts and Sciences,
Johns Hopkins University, Baltimore, MD. His current research interests include
computational neuroscience.

Dr. Niebur was the recipient of the Seymour Cray (Switzerland) Award in Scientific
Computation in 1988, the Alfred P. Sloan Fellowship in 1997, and the National Science
Foundation CAREER Award in 1998.

Russell et al. Page 19

IEEE Trans Neural Netw. Author manuscript; available in PMC 2011 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Jonathan Tapson (M′05) received the B.Sc. degree in physics and in electrical engineering
in 1986 and 1988, respectively, and the Ph.D. degree in 1994, all from the University of
Cape Town, Rondebosch, South Africa.

He rejoined his alma mater in 1997 and was promoted to Professor of Instrumentation in
2003, after spells in industry and in a government research laboratory. His current research
interests include smart sensors, networked instruments, and bio-inspired systems.

Dr. Tapson serves on the boards of three companies which have spun out of his research
work. These operate in areas as diverse as web-based monitoring of industrial machinery
and induction melting of platinum and precious metals in the jewelry industry. He is most
proud of Cell-life, Inc., a not-for-profit corporation which uses GSM cellphone technology
to provide IT solutions for the HIV/AIDS crisis in Africa, and which currently supports over
65 000 patients, including over 5000 children.

Ralph Etienne-Cummings (S′95–M′98–SM′08) received the B.Sc. degree in physics from
Lincoln University, PA, in 1988. He obtained the M.S.E.E. and Ph.D. degrees in electrical
engineering at the University of Pennsylvania, Philadelphia, in December 1991 and 1994,
respectively.

He is currently a Professor of electrical and computer engineering, and computer science at
Johns Hopkins University (JHU), Baltimore, MD. He is the former Director of Computer
Engineering at JHU and the Institute of Neuromorphic Engineering, currently administered
by the University of Maryland, College Park. He is also an Associate Director for Education
and Outreach of the National Science Foundation (NSF) sponsored Engineering Research
Centers on Computer Integrated Surgical Systems and Technology at JHU. His current
research interests include mixed-signal very large scale integration systems, computational
sensors, computer vision, neuromorphic engineering, smart structures, mobile robotics,
legged locomotion, and neuroprosthetic devices.

Prof. Etienne-Cummings is the recipient of the NSF CAREER Award and the Office of
Naval Research Young Investigator Program Award. In 2006, he was named a Visiting
African Fellow and a Fulbright Fellowship Grantee for his sabbatical at the University of
Cape Town, Rondebosch, South Africa. He was invited to be a Lecturer at the National
Academies of Science Kavli Frontiers Program, held in November 2007.

Russell et al. Page 20

IEEE Trans Neural Netw. Author manuscript; available in PMC 2011 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 1.
(a) Desired and predicted spike times. Both the desired and predicted spike trains were
simulated without noise. If the model were to be used to predict real neural signals, noise
could be added to account for the variability inherent in real neural data. (b) Threshold
probability evolution for tonic bursting. The dispersion of probability with time is shown by
the shading. The whiter the shading, the higher the probability. The dotted line is the
boundary condition which coincides with the deterministically calculated membrane
potential of the neuron. (c) Magnified view of the probability evolution during the first
bursting cycle.

Russell et al. Page 21

IEEE Trans Neural Netw. Author manuscript; available in PMC 2011 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 2.
Top raster: One second worth of spike data taken from the Quantitative Single-Neuron
Modeling Competition 2009 [30]. Each row is a separate recording resulting from identical
stimulation. Bottom raster: The predicted spike trains from the M–N neuron.

Russell et al. Page 22

IEEE Trans Neural Netw. Author manuscript; available in PMC 2011 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 3.
Canonical network used by Lewis et al. [35]. The shaded neurons are 180° out of phase
from the non-shaded neurons. Filled dots denote inhibitory synapses. MN denotes motor
neurons.

Russell et al. Page 23

IEEE Trans Neural Netw. Author manuscript; available in PMC 2011 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 4.
Increase in probability of finding a solution as a result of using staged evolution when P(X)
and P(Y |X) are small and n = 100. P(X) is the probability of correctly choosing a set of
neuron parameters such that the CPG will work. P(Y |X) is the probability of correctly
choosing interneuron parameters given a set of neuron parameters.

Russell et al. Page 24

IEEE Trans Neural Netw. Author manuscript; available in PMC 2011 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 5.
Reduced canonical network for (a) software simulations and (b) hardware simulations.
Similarities and symmetries between neural outputs allow CPG1 and CPG2 to act as the
half-centered oscillator as well as the hip extensors (CPG1-left hip, CPG2-right hip), and
flexors (CPG1-right hip, CPG2-left hip). Further 180° symmetry between legs allows the
motor neurons to function as both knee extensors (MN1-left knee, MN2-right knee) and
flexors (MN1-right knee, MN2-left knee). The additional coupling between the motor and
CPG neurons in the hardware implementation allows for greater flexibility and control of the
gait. For nonsymmetric gaits, the network would be expanded to allow independent control
of the left and right motor neurons.

Russell et al. Page 25

IEEE Trans Neural Netw. Author manuscript; available in PMC 2011 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 6.
Circuit diagram for a single integrate and fire silicon neuron. PW control determines the
pulsewidth of the output spikes, Discharge determines how long the membrane discharges
for after a spike. Vthresh is the spike threshold. The weights each have an 8-bit
programmable magnitude and a sign bit. Adaptation is implemented using an external RC
circuit which filters the output and feeds the result back into one of the analog inputs. The
Feedback inputs are internal to the chip and one is connected to the output of each neuron on
chip.

Russell et al. Page 26

IEEE Trans Neural Netw. Author manuscript; available in PMC 2011 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 7.
Initial topology used to control the shape of the joint angle profiles. To avoid clutter, only
the motor neurons for the left side are shown. The circuit would look almost identical for the
right side, except that CPG1 and CPG2 would be swapped around to cause a 180° phase
shift. At the beginning of this stage of evolution, we introduce six motor neurons (shaded
neurons) per joint. Motor neurons with little or no contribution (low summation weights) are
later removed from the network to conserve computational resources. Each final summation
weight can be positive or negative as determined by the optimization process.

Russell et al. Page 27

IEEE Trans Neural Netw. Author manuscript; available in PMC 2011 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 8.
Hardware setup for silicon implementation of the CPG from Fig. 5. MATLAB code on the
host PC runs the GA. Network parameters are communicated to a microcontroller which
configures the neural chip appropriately. Neuron outputs are digitized by the
microcontroller, which communicates them back to the PC where the fitness function is
computed. The spiking output waveform was recorded from the silicon network once it had
been optimized with target parameters of 2 Hz, 70% duty cycle, and 180° phase shift
between the oscillators controlling the left and right side.

Russell et al. Page 28

IEEE Trans Neural Netw. Author manuscript; available in PMC 2011 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 9.
Results from software optimization of CPG parameters. Discussed under Section V-A. (a)
Stage II optimization results where the simulated network was configured to oscillate at
walking frequencies between 0.5 and 3.5 Hz. (b) Stage III optimization results where the
network was configured for various phase differences between 10 and 90° at a walking
frequency of 1 Hz. (c) Stage III results where the network was configured for a 45° phase
difference across all walking frequencies. (d) Stage III results where the network was
configured for a 90° phase difference across all walking frequencies.

Russell et al. Page 29

IEEE Trans Neural Netw. Author manuscript; available in PMC 2011 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 10.
Evolution of parameters during optimization. Each stage of evolution runs for five
generations. The transition between stages is shown by the dashed lines. Note that the target
frequency varies between stages. (a) Results of neuron parameter evolution over stage 1 and
stage 2. (b) Results of frequency and duty cycle convergence over stages 1–3. (c) Results of
parameter evolution for phase convergence in stage 3.

Russell et al. Page 30

IEEE Trans Neural Netw. Author manuscript; available in PMC 2011 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 11.
Network topology resulting from GA optimization. The relatively simple shape of the hip
joint angle profile requires only three motor neurons to achieve the specified accuracy, while
the more complex shape of the knee profile requires four motor neurons. The sign of each
weight is indicated in the summation kernel. The percentage contribution of each neuron is
also shown.

Russell et al. Page 31

IEEE Trans Neural Netw. Author manuscript; available in PMC 2011 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 12.
(a) Simulated network output once it has been optimized for a frequency of 1 Hz and with a
phase shift of 90° between the hips and knees. (b) and (c) show the evolution of the knee and
hip joint angle profiles, respectively, as they target the human data (solid line). The dashed
lines show the joint angle profiles before optimization and the dotted lines show the post
optimization joint angle profiles.

Russell et al. Page 32

IEEE Trans Neural Netw. Author manuscript; available in PMC 2011 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 13.
Redbot [40] bipedal robot walking using the evolved network mimicking human joint angle
profiles.

Russell et al. Page 33

IEEE Trans Neural Netw. Author manuscript; available in PMC 2011 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


