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Summary

By learning to discriminate among visual stimuli, hu-
man observers can become experts at specific visual

tasks. The same is true for Rhesus monkeys, the major
animal model of human visual perception. Here, we

systematically compare how humans and monkeys
solve a simple visual task. We trained humans and

monkeys to discriminate between the members of
small natural-image sets. We employed the ‘‘Bubbles’’

procedure [1] to determine the stimulus features used
by the observers. On average, monkeys used image

features drawn from a diagnostic region covering
about 7% 6 2% of the images. Humans were able to

use image features drawn from a much larger diagnos-
tic region covering on average 51% 6 4% of the images.

Similarly for the two species, however, about 2% of the
image needed to be visible within the diagnostic region

on any individual trial for correct performance. We

characterize the low-level image properties of the diag-
nostic regions and discuss individual differences

among the monkeys. Our results reveal that monkeys
base their behavior on confined image patches and es-

sentially ignore a large fraction of the visual input,
whereas humans are able to gather visual information

with greater flexibility from large image regions.

Results and Discussion

We investigated the performance of monkey observers
trained to discriminate among natural images. Natural
images contain structure at many spatial scales distrib-
uted nonhomogenously across the image and are thus
good examples of complex, redundant visual forms.
The monkeys were trained to discriminate between
three natural images by performing a saccade task
with these stimuli (see Figure 1). Every stimulus presen-
tation was followed by the presentation of three re-
sponse targets, each of which was associated with one
of the stimuli. Upon presentation of a particular stimulus,
a saccade to the associated target was rewarded with
a drop of juice.

After the monkeys reached a performance level of at
least 80% correct for a particular stimulus set, ‘‘Bub-
bles’’ was used to identify the diagnostic regions for
each stimulus in the set. In Bubbles, stimuli are sampled
from a parametric search space. Here, we search the im-
age space by presenting the stimuli behind occluders,

*Correspondence: gregor.rainer@tuebingen.mpg.de
which consist of a mid-gray mask punctured by a num-
ber of randomly located windows (‘‘bubbles’’) through
which the occluded image was visible (see Experimental
Procedures for details). Unique occluders were gener-
ated on every trial by randomly placing the bubbles.
The monkeys continued to perform their discrimination
task on the partially visible images. Whether they could
identify the partially visible stimuli depended on whether
the occluder uncovered image parts critical for task per-
formance. For quantitative analysis, we grouped the oc-
cluders from trials in which a stimulus was correctly
identified. We similarly grouped occluders from incor-
rect trials, and we determined diagnostic regions by
comparing these two groups. At each pixel, the distribu-
tions of occluder values for correct and incorrect trials
were compared with the Kolmogorov-Smirnov test. Im-
age pixels at which occlusion systematically influenced
performance should show a different distribution of oc-
cluder values in correct and incorrect trials, whereas
similar distributions should arise for pixels with no influ-
ence of occlusion. The p values of the Kolmogorov-
Smirnov test were Bonferoni corrected for the number
of image pixels, and diagnostic regions were taken to
be image regions where the corrected p values were
below 0.01.

Because monkeys had not been tested with Bubbles
before, we first established that the technique is suitable
for the study of visual recognition in monkeys. For this
purpose, we used a custom-designed set of geometrical
shapes for which we a priori determined the diagnostic
regions. The results of this experiment are reported in
the Supplemental Data available online. We then pro-
ceeded to use Bubbles to study visual-information use
in a task that required the discrimination among the
members of natural-image sets. The diagnostic regions
for two image sets and both monkeys are shown on the
left side of Figure 2. Diagnostic regions covered on aver-
age 7% 6 2% of each image and were similar in size for
the two monkeys [G00: 4.5%; B98: 9.3%; paired t test:
t(5) = 21.34, p = 0.24]. Note that no diagnostic region
could be determined for one of the images in monkey
B98, suggesting that the monkey used no region consis-
tently to identify the image.

Whereas the size of the diagnostic regions was similar
for the two monkeys, their diagnostic regions tended to
contain different amounts of spatial structure and cover
different image locations. For monkey B98, diagnostic
regions were located closer to the image border and con-
tained image regions that largely lacked spatial struc-
ture. In contrast, G00 used image regions with more spa-
tial structure, located near the center of the images.
Accordingly, diagnostic regions for the two monkeys dif-
fered in terms of their distance from the image center [av-
erage distance for B98: 2.93º of visual angle; G00: 1.99º;
paired t test: t(4) = 25.67, p < 0.01]. Image structure was
characterized by luminance and amount of edges. Both
parameters were computed at four decreasing levels of
spatial scale (see Experimental Procedures). The mean
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Figure 1. Task Design for the Monkey Observers

Each task began with the presentation of a central fixation spot, which the monkeys had to fixate. While the monkey continued to fixate, the fix-

ation spot was replaced by the stimulus for 300 ms, after which time the fixation spot reappeared. Finally, three targets appeared in the periphery,

each of which was associated with one of the stimuli. The monkey had to make a saccade to the correct target to receive a reward.
luminance of the diagnostic regions was similar for both
monkeys, independent of spatial scale [paired t test:
t(4) % 0.75, p R 0.5 for the four scales]. However, the di-
agnostic regions of B98 contained significantly fewer
edges at the finest resolution [paired t test: scale 1:
t(4) = 3.33, p = 0.03; scale 2: t(4) = 2.63, p = 0.06; scale 3:
t(4) = 2.05, p = 0.11; scale 4: t(4) = 2.63, p = 0.06], confirm-
ing that the diagnostic regions of monkey B98 contained
less spatial structure. Thus, diagnostic-region size, but
not its location or spatial structure, was consistent
across both monkeys. During task performance, we in-
troduced catch trials on which the unoccluded images
were shown to ensure that monkeys were maintaining
high performance discriminating the unoccluded im-
ages. Both monkeys performed equally well on these
catch trials [G00: 95% correct, B98: 98% correct, paired
t test: t(5) = 21.24, p = 0.27].
Do the diagnostic regions identified by Bubbles bear
any relation to performing the task outside the Bubbles
paradigm? To address this question, we investigated
whether monkeys could correctly identify images when
presented with their diagnostic regions alone. For this
purpose we constructed ‘‘diagnostic’’ stimuli that con-
sisted of image regions with high diagnosticity by re-
vealing the 10%, 30%, and 50% most diagnostic pixels
(see Figure 3). Similarly, we constructed ‘‘nondiagnos-
tic’’ stimuli consisting of the 10%, 30%, and 50% least
diagnostic pixels. A unique stimulus set was generated
for each monkey on the basis of that monkey’s Bubbles
results. All six stimuli thus constructed were matched
to the original image in terms of mean luminance and
contrast. Monkeys performed the discrimination task
with the modified stimuli with no additional behavioral
training.
Figure 2. Diagnostic Regions in Natural Scenes for Monkeys and Humans

The left side shows the results for the two monkey observers, the right side for the human observers. Lines encircle the diagnostic regions, with

each color corresponding to one observer (observer identity is given in the legend below each plot).
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Figure 3. Verification of the ‘‘Bubbles’’ Results

(A) Exemplar stimuli showing a ‘‘diagnostic’’ and a ‘‘nondiagnostic’’ stimulus. These stimuli were generated based on the Bubbles results for the

first scene in the first image set for monkey G00. In both stimuli, 50% of the original stimulus are exposed.

(B) Performance of the monkeys with the control stimuli. Data are averaged across both monkeys and stimulus sets. Black bars correspond to

the performance for diagnostic stimuli, open bars to the performance for nondiagnostic stimuli. The dashed line shows the chance level (33.3%).

Stars indicate deviations in the performance from chance level significant at p < 0.05, as assessed by a c2 test.
Performance levels were averaged across all six im-
ages in the two sets and both monkeys (see Figure 3).
All performance levels were compared against the
chance level of 33% correct responses with a c2 test.
Monkeys performed significantly better than chance
for all diagnostic stimuli (c2 tests: c2 R 37.6, p < 1028

for the three stimulus sizes). However, monkeys per-
formed at chance level for the three nondiagnostic stim-
uli (c2 % 2.48, p > 0.16 for the three tests). This indicates
that when monkeys were confronted with image regions
of high diagnosticity, they treated these as the un-
occluded images and were able to perform the task. In
the absence of high-diagnosticity regions, monkeys
were unable to perform above chance.

To compare the visual information use of monkeys
with that of humans, we tested human observers with
Bubbles on the identical image sets. The diagnostic re-
gions for human observers are shown on the right side of
Figure 2. With an average size of 51% 6 4% of the full
image, diagnostic regions for human observers were
an order of magnitude larger than the diagnostic regions
determined for the monkeys. A t test showed this differ-
ence to be significant [t(28) = 29.44, p < 0.001]. These re-
sults are summarized in Figure 4A, which contrasts the
diagnostic-region size for the two species.

On most of the trials, the diagnostic regions were not
completely exposed, but only a small portion of them
was visible. To analyze how much of the diagnostic re-
gion was visible on an average correct trial, we focused
on the last trials of each testing session. Performance
levels were similar for monkeys and humans for this
data set [t test on the performance levels, t(25) = 0.05,
p = 0.96]. For each trial, we then computed what fraction
of the diagnostic region was visible through the oc-
cluder. These data, averaged across correct and incor-
rect trials separately, are plotted in Figure 4B, showing
that monkeys needed to see more of their diagnostic
regions to identify an image than human observers. On
average, 42.9% of a diagnostic region needed to be vis-
ible for the monkeys to correctly identify a scene,
whereas on incorrect trials only 32.9% of the diagnostic
region was visible. This difference was statistically sig-
nificant [t(8) = 2.67, p = 0.03]. For human observers,
only an average of 4.2% of the diagnostic region was
visible on correct trials, compared to 2.1% on incorrect
trials. This difference was also statistically significant
[t(17) = 8.60, p < 0.001], as were the differences between
monkeys and human observers [correct trials: t(25) =
12.65, p < 0.001; incorrect trials: t(25) = 11.98, p < 0.001].

The results imply that monkeys needed to see more of
the diagnostic image regions for a correct identification.
However, the diagnostic regions of monkeys cover
a smaller extent of the full image. Considering of each
occluder only the bubbles that fall into the diagnostic re-
gions, we found that for the monkeys, on average 2.0%
of an image was visible on correct trials. This value was
similar to the result for humans, for which 2.2% of an im-
age was visible on an average correct trial [t(25) = 20.41,
p = 0.69]. On the incorrect trials performed by monkeys,
only 1.4% of the images was visible, whereas 1.1% of
the images was visible on incorrect trials for human ob-
servers. Again, the two values were not significantly dif-
ferent [t(25) = 0.91, p = 0.37]. In conclusion, when only
the diagnostic image regions are considered, monkeys
and humans required the same amount of the full stimu-
lus to be exposed for a similar performance.

Finally, we examined individual differences among
human and monkey observers. We estimated the de-
gree to which the diagnostic regions of different ob-
servers overlapped. Averaged across the two image
sets, the diagnostic regions of the two monkeys over-
lapped in 1.2% of the full image, or 17.3% of an average
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Figure 4. Comparison of the ‘‘Bubbles’’ Results between Monkeys and Humans

(A) Size of the diagnostic regions in percentage of original image size. The bars indicate the mean across all observers and images. Symbols

indicate the values for individual diagnostic regions.

(B) Percentage of the diagnostic region visible on an average correct (black bar) or incorrect (open bar) trial. Bars show the average across all

observers and images. The error bars correspond to the standard error of the mean.
diagnostic region. In contrast, the diagnostic regions of
human observers overlapped on average in 35.6% of the
full image, i.e., in 69.2% of the diagnostic regions. Thus,
diagnostic regions of individual human observers
tended to be more similar to each other than the diag-
nostic regions of the two monkeys. This raised the ques-
tion of to what extent the behavior of human observers
can be used to predict the monkey observers’ behavior.
We computed the overlap between the human ob-
servers’ consensus diagnostic region and a monkey ob-
server’s diagnostic region. Across the two scene sets,
the common diagnostic region for the human observers
overlapped with 77.2% of a diagnostic region of monkey
G00. For monkey B98, the data from human observers
could be used to predict about 19.3% of the monkey’s
diagnostic region. This indicates that diagnostic regions
estimated in human observers are not in general a good
predictor for diagnostic regions in monkeys.

We have trained human and monkey observers to dis-
criminate between natural images. Such images contain
a wealth of features that observers might use to dis-
criminate among them. Are observers using all available
features in the images equally, or are they preferentially
relying on certain features to guide their behavior? To
answer this question, we used the Bubbles technique
to determine diagnostic regions for each image. These
diagnostic regions delineate the spatial location of the
features that significantly contributed to observer per-
formance in the discrimination task. Generally, diagnos-
tic regions covered only a fraction of the entire visual
stimulus, suggesting that observers were not drawing
information equally from the entire image, but sampling
preferentially from restricted image portions. Unavail-
ability of diagnostic regions due to occlusion was asso-
ciated with observers’ inability to perform the discrimi-
nation task.

We observed robust differences in diagnostic-region
size between monkey and human observers. Whereas
monkey diagnostic regions covered only a small fraction
of the images, they were approximately an order of mag-
nitude larger for human observers, where they covered
around half of the images. Diagnostic regions represent
the image parts from which observers draw information,
but how much visual information do observers need to
see on an individual trial to enable them to perform cor-
rectly? Intriguingly, taking into account the diagnostic-
region size, we found that around 2% of the entire image
was visible on the average correct trial in both monkeys
and humans. Thus, although the actual amount of visual
information required for correct performance was simi-
lar for monkeys and humans, humans were able to
gather this information from a much larger region. This
suggests that human observers could extract task-
relevant information from the visual environment with
greater flexibility. A recent study applied the Bubbles
technique to a face-classification task in human ob-
servers and pigeons and found general agreement be-
tween diagnostic regions in terms of size and location
for those two species [2]. To what degree this is a result
of the different visual stimuli used in that and our study
remains to be determined.

Although diagnostic-region size was similar for both
monkeys, they showed significant individual differences
in location and image statistics of the diagnostic re-
gions. Diagnostic regions in one monkey were located
close to the image center and contained lots of spatial
structure, whereas in the other monkey they were
located close to the image border and contained little
spatial structure. These differences in the diagnostic re-
gions cannot be explained by different training histories,
because the two monkeys received the same training.
Our results therefore imply that the monkeys’ individual
biases led them to choose different strategies. Note that
both monkeys performed the discrimination task with
unoccluded images at similarly high levels. As our find-
ings suggest, they achieved this performance by using
very different strategies and focusing on different image
regions. There is no way to infer this rather striking
difference in visual information use on the basis of per-
formance data on the discrimination task, and it can
be detected only with a method, such as Bubbles, that
directly visualizes information use.

We demonstrate that trained observers use partic-
ular spatial regions in complex scenes to perform
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a discrimination task. Other forms of perceptual learning
are based on enhancing sensitivity for orientation, spa-
tial frequency, or other stimulus dimensions [3]. The spa-
tial version of Bubbles employed here does not tell us
whether observers are relying specifically on certain
spatial frequency or orientation channels; however, in
principle Bubbles can readily be adapted for the study
of such effects. Indeed, it has already been used to iden-
tify how the performance of a task depends on different
spatial-frequency channels [1], as well as on their phase
[4]. The version of Bubbles we used relies on occlusion to
study the contribution of image features to behavioral
performance, raising the question how relevant our re-
sults are to real-world vision. Occlusion is common in ev-
eryday life, and we are generally able to recognize ob-
jects despite the fact that they are partially occluded.
Thus, Bubbles can be thought of as a parametric unbi-
ased method for simulating the occlusion that occurs
in many real-world situations. In addition, several behav-
ioral studies have provided evidence for the idea that
chimpanzees [5], as well as macaque monkeys [6, 7],
are able to recognize familiar stimuli despite partial
occlusion.

Our findings reveal which features of a set of learned
visual stimuli observers actually use during the perfor-
mance of a task. In brain regions such as area TE of
the inferior temporal cortex, learning has been associ-
ated with long-lasting modifications in neural activity
to represent task-relevant attributes of visual stimuli
[8]. After training, TE neurons become tuned to features
diagnostic for a categorization or discrimination task
[9, 10], or to the trained views of three dimensional ob-
jects [11]. Most previous studies on the effects of train-
ing on the perception of complex stimuli have used stim-
uli with predefined dimensions (for example, [12–14]). In
these studies, stimuli are assigned to different classes
according to experimenter-defined parameter ranges.
For example, observers learned to sort Greeble stimuli
into different classes based on the shapes of their com-
ponents [15], or to sort face and fish stimuli into cate-
gories based on dimensions such as nose height or fin
size [16]. Investigators have generally inferred that after
learning, observer performance must be based on ac-
quired expertise about which aspects of the stimuli are
diagnostic. However, most complex visual stimuli are
not parametrically defined according to simple genera-
tive models and contain many elements that are at
different spatial scales and could be employed by ob-
servers. Direct methods such as Bubbles may thus
prove particularly useful for understanding how such
complex stimuli are encoded in the brain.

Experimental Procedures

Subjects

Two adult male Rhesus monkeys (Macaca mulatta) weighing 10 and

13 kg participated in the experiments. Before the experiments, a

metal head post and a scleral search coil [17] were implanted under

aseptic conditions [18]. Monkeys received their daily amount of

liquid during the experimental sessions and were provided with

dry food ad libitum. The monkeys were tested daily and performed

between 500 and 1000 trials per day. About 20 sessions were col-

lected per monkey for each stimulus set. All studies involving the

monkeys were approved by the local authorities (Regierungspräsi-

dium Tübingen) and were in full compliance with the guidelines of
the European Community (EUVD, European Union directive 86/609/

EEC) and the National Institutes of Health for the care and use of

laboratory animals.

A total of eight human observers (3 males, 5 females) were tested.

All subjects were naive as to the purpose of the experiments. In-

formed consent was obtained from all subjects. Subjects had nor-

mal or corrected-to-normal vision. Testing sessions usually lasted

between 1 and 3 hr, with subjects completing between 1000 and

2000 trials in this time. Subjects returned to the lab for additional

sessions, until a total of 3000 to 6000 trials had been collected.

Task and Stimuli

Two stimulus sets of three natural scenes each were used. All stimuli

had a size of 256 3 256 pixels, corresponding to 6º 3 6º of visual

angle. The natural scenes were taken from Corel PhotoCDs and

normalized to have equal Fourier amplitude spectra [19]. All stimuli

were presented centrally. Both monkey and human observers

worked with one stimulus set at a time. During each trial, one of the

stimuli was randomly chosen and presented to the observer. Ob-

servers had to indicate which of the three stimuli they had just seen.

For monkeys, each trial began with the presentation of a yellow

fixation spot in the center of the screen, combined with the sounding

of a tone. After 100 ms fixation time, the spot was turned off and the

stimulus was presented for 300 ms. During stimulus presentation,

the monkeys had to maintain fixation at the center of the screen in

a window with a radius of 3º. After another 100 ms of central fixation,

three small white squares (the targets) were presented at 6º eccen-

tricity. Each of the three members of a stimulus set was associated

with one of the targets. A saccade to the correct target was

rewarded by a drop of juice.

For human observers, trials began with the presentation of a yel-

low fixation spot for 500 ms, followed by one of the stimuli for

500 ms. Observers responded after the presentation of the stimulus

by pressing designated keys on the numerical keypad of a standard

computer keyboard. Each of the images in a stimulus set was asso-

ciated with a specific response key. No constraints were imposed on

reaction time. For the data described above, no fixation constraints

were imposed because of the brief presentation time, and observers

were not given feedback about the correctness of their answer to

prevent learning and behavioral nonstationarity during ‘‘Bubbles.’’

To ensure that these factors did not significantly contribute to the

differences between humans and monkeys, we performed control

experiments during which three human observers were required to

maintain fixation within 3º of the center of the screen. The control

experiments were performed with the second natural-scene set.

The tested subjects did not participate in the previous experiments.

During these control experiments, stimuli were presented for

300 ms, and we provided human observers with performance feed-

back such that after each trial a ‘‘+’’ or ‘‘2’’ sign on the screen indi-

cated correctness of the response. These conditions thus recreated

the exact parameters we used for the monkeys. We found that the

characteristics of the diagnostic regions were not changed by these

additional controls. In particular, the diagnostic-region size was

33.5% 6 5% and thus statistically indistinguishable from that ob-

tained in the original experiments [46.1% 6 7%, t test, t(16) =

21.54, p = 0.14]. There was a 73% overlap between diagnostic re-

gions determined in these control experiments and the regions

obtained in the original experiment.

All observers were initially trained to associate each of the unoc-

cluded stimuli with its assigned saccade target or button press.

For monkeys, this was done by introducing a brightness cue in the

saccade targets, with the correct target being brighter than the in-

correct targets. This cue was gradually removed as the monkeys’

performance improved. Monkeys were always trained with the entire

stimulus set. Monkeys initially learned to associate visual stimuli

with saccade directions prior to the stimulus sets reported here.

This initial training lasted for a period of several months. Once the

monkeys had learned the rules of the task, they quickly acquired

new stimulus sets. Humans were provided with a printout that

showed both the stimuli and their associated buttons in order to

inform them about the mapping between stimuli and response

buttons. They were then given a training period of 20 trials, in which

they could use the printout to guide their responses. After these

training trials, the printout was removed. All subjects performed
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better than 90% correct on the original stimuli after these training

trials.

After observers had acquired the task with unoccluded stimuli, we

additionally introduced stimuli with occluders. The presentation of

unoccluded images was maintained (10% of trials for human ob-

servers, 40% for monkeys) as a baseline control of the performance.

The occluders were constructed as described in [1]. In brief, each

occluded image appeared to be shown behind a surface punctured

by round windows (‘‘bubbles’’), through which parts of the image

were visible. Bubbles had the profile of a 2D Gaussian, so that

they smoothly merged into the nontransparent background. Bub-

bles were randomly positioned, with the restriction that the center

of each bubble fell onto an image pixel, and two bubbles could not

have identical center coordinates. All bubbles had the same size,

which was determined by setting the standard deviation of the 2D

Gaussian profile to 14 pixels. For the human subjects, bubbles num-

bers were adapted to each subject’s performance by a staircase

protocol. Staircases were run independently for each image in a

stimulus set and converged to a performance of 75% correct. After

every fourth trial of an image, the bubbles number was updated. The

number was decreased by three if the image had been identified cor-

rectly in the last four trials, and it was increased by two if fewer than

three trials had been correct. For the monkeys, we employed the

same staircase procedure in most sessions. As an additional con-

trol, we used a modified staircase procedure for one dataset (sec-

ond set of natural images for monkey B98). During these sessions,

the bubbles numbers were identical for all images, rather than adap-

ted to each stimulus independently as in the original staircase pro-

cedure. The modified procedure thus showed all stimuli through

the same bubbles number, preventing the number of bubbles itself

from serving as a potential cue to the stimulus. They were initialized

to a value at which the monkeys could perform the task at ceiling

performance. After 15 trials, the bubbles numbers were successively

decreased by a fixed amount until the monkey’s performance drop-

ped below 70% correct. At this point, the numbers of bubbles were

reset to the initial value and the cycle was restarted.

Setup

Monkeys performed experiments in acoustically shielded cham-

bers. Eye movements were monitored with the scleral-search-coil

technique [20] and digitized at 200 Hz. Stimuli were presented on a

21’’ monitor (Intergraph 21sd115, Intergraph Systems, Huntsville)

with a resolution of 1024 by 768 pixels and a refresh rate of 75 Hz.

Background luminance of the monitor was set to 41 cd/m2, and

the monitor was g corrected. The monitor was placed at a distance

of 95 cm from the monkey. Stimuli were generated in an OpenGL-

based stimulation program under Windows NT. Similar equipment

was used for human observers, who were seated 85 cm from the

monitor (background luminance of 27 cd/m2). When eye movements

of human observers were measured, the head position of the ob-

servers was restrained by using a chinrest. Eye movements were

measured with iView 1.1 (SensoMotoric Instruments GmbH, Teltow,

Germany).

Data Analysis

Analyses were carried out in Matlab (The Mathworks, Natick). To de-

termine how much of the diagnostic regions was visible through the

occluder on any trial, we analyzed the last 40 trials of each staircase

session for each stimulus. Bubbles numbers were stable throughout

these trials. Monkey B98 was tested on the second set of natural

scenes with a method of constant stimuli; therefore, this data set

was excluded from the analysis. Because only four to six sessions

were run for human subjects, we used only the last four testing ses-

sions for the monkeys. An image pixel was considered to be visible

when the occluder value for this pixel was equal to or larger than 0.5.

Physical properties of an image were characterized as the distri-

bution of luminance, as well as edges across the image [21]. Both

parameters were computed at four spatial resolutions, which were

generated through progressively low-pass filtering and subsam-

pling the image. The four resolutions corresponded to horizontal

and vertical image-reduction factors of 1, 0.5, 0.25, and 0.125. Lumi-

nance information was computed at each resolution by convolution

of the image with a 2D Gaussian with a kernel size of 20 by 20 pixels

and a standard deviation of 4 pixels. Edges of four different
orientations (0º, 45º, 90º, 135º) were detected at each resolution.

They were extracted by applying quadrature filter pairs to the

images, i.e., pairs of similarly oriented sine and cosine Gabor filters.

The standard deviation of the filters was set to 4 pixels, and the fre-

quency to 1/10 pixels. Artifacts at the image borders were avoided

by appending copies of an image to its borders. These copies

were only present while convolutions were computed. All computed

luminance and edge maps were rescaled to half the size of the orig-

inal image, i.e., to 128 by 128 pixels.

Supplemental Data

Supplemental Data include Supplemental Results, one figure, and

one table and are available with this article online at: http://www.

current-biology.com/cgi/content/full/16/8/814/DC1/.
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