Mesodermal and neuronal retinoids regulate the induction and maintenance of limb innervating spinal motor neurons

Sheng-Jian Ji¹, BinQuan Zhuang¹, Crystal Falco¹, André Schneider², Karin Schuster-Gossler², Achim Gossler², Shanthini Sockanathan¹,*

¹ Department of Neuroscience, Johns Hopkins University School of Medicine, 725 N Wolfe Street, Baltimore, MD 21205, USA
² Institute for Molecular Biology OE5250, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany

Received for publication 4 March 2006; revised 13 April 2006; accepted 11 May 2006
Available online 19 May 2006

Abstract

During embryonic development, the generation, diversification and maintenance of spinal motor neurons depend upon extrinsic signals that are tightly regulated. Retinoic acid (RA) is necessary for specifying the fates of forelimb-innervating motor neurons of the Lateral Motor Column (LMC), and the specification of LMC neurons into medial and lateral subtypes. Previous studies implicate motor neurons as the relevant source of RA for specifying lateral LMC fates at forelimb levels. However, at the time of LMC diversification, a significant amount of retinoids in the spinal cord originates from the adjacent paraxial mesoderm. Here we employ mouse genetics to show that RA derived from the paraxial mesoderm is required for lateral LMC induction at forelimb and hindlimb levels, demonstrating that mesodermally synthesized RA functions as a second source of signals to specify lateral LMC identity. Furthermore, reduced RA levels in postmitotic motor neurons result in a decrease of medial and lateral LMC neurons, and abnormal axonal projections in the limb; invoking additional roles for neuronally synthesized RA in motor neuron maintenance and survival. These findings suggest that during embryogenesis, mesodermal and neuronal retinoids act coordinately to establish and maintain appropriate cohorts of spinal motor neurons that innervate target muscles in the limb.

© 2006 Elsevier Inc. All rights reserved.

Keywords: Retinoids; Motor neuron; Specification; Maintenance

Introduction

The generation and maintenance of different neuronal subtypes during embryonic development are essential events in the establishment of a functional nervous system. In vertebrates, this complex process involves the implementation of cell-intrinsic events by extrinsic signals emanating from local cellular sources (Jessell and Melton, 1992; Liu and Joyner, 2001). In many cases, inductive signals are expressed both by cells adjacent to the nervous system, and by cells resident within the nervous system itself (Jessell, 2000). However, few studies have examined the relative contributions of these different sources towards specifying neuronal fates, or if there are later requirements for these signals in maintaining neuronal numbers.

One model system where the expression of extrinsic factors known to be involved in neuronal fate specification is juxtaposed in adjacent tissues is in developing spinal motor neurons (Jessell, 2000). All motor neurons derive from a distinct ventral progenitor domain, set up in part by sonic hedgehog secreted by the notochord and floorplate (Jessell, 2000; Shirasaki and Pfaff, 2002; Price and Briscoe, 2004). The cell bodies of motor neurons are organized into distinct columns defined by their position along the rostral-caudal axis and their stereotypic axonal projections in the periphery (Landmesser, 1978; Hollyday, 1980a,b; Gutman et al., 1993). Motor neurons of the medial Median Motor Column (MMC) are found at all axial levels whereas lateral MMC neurons and preganglionic...
autonomic motor neurons are located specifically in thoracic regions (Prasad and Hollyday, 1991; Gutman et al., 1993; Cornbrooks et al., 1997). Motor neurons of the Lateral Motor Column (LMC) are generated exclusively at forelimb and hindlimb levels and form medial (LMCm) and lateral (LMCl) divisional subtypes which project to ventral and dorsal muscles in the limb, respectively (Landmesser, 1978; Hollyday, 1980a,b; Tosney and Landmesser, 1985a,b). Individual motor columns and divisions can be molecularly defined by the combinatorial expression of LIM homeodomain protein family members (Tsuchida et al., 1994). These transcription factors functionally contribute to the settling patterns of motor neuron cell bodies and their axonal projection profiles (Pfaff et al., 1996; Sharma et al., 1998, 2000; Kania et al., 2000).

Biochemical studies, combined with analyses of reporter mice sensitive to activated retinoid receptors, demonstrate that retinoids are present within the developing spinal cord at the time of motor neuron generation and specification; suggesting a requirement for RA signaling during these events (Rossant et al., 1991; McCaffery and Drager, 1994; Solomin et al., 1998). Recently, work in chicks and Vitamin A deficient quails describes critical roles for RA signaling in establishing and generating motor neuron progenitors, and in mediating their subsequent differentiation into postmitotic motor neurons (Novitch et al., 2003; Diez del Corral et al., 2003; Wilson et al., 2004). Remarkably, retinoids can also influence the fates of motor neurons postmitotically. When dominant-negative retinoid receptors are introduced into postmitotic spinal motor neurons, forelimb level motor neurons do not acquire LMC subtype identities but instead adopt thoracic motor column properties (Sockanathan et al., 2003). This suggests that retinoid signaling imposes forelimb LMC identities partly through the suppression of thoracic fates. Surprisingly, hindlimb LMC formation is not perturbed, suggesting that lumbar LMC identity may be specified by alternative mechanisms (Sockanathan et al., 2003). In addition to influencing columnar identity, retinoids are also required for the divisional specification of LMC neurons. Experiments in the chick show that retinoids can induce LMC1 neurons and thus contribute to the diversification of LMC motor neurons into medial and lateral subtypes. Further, retinoid signals are also required for the maintenance of LMC1 properties during the migration of these neurons to their final settling position (Sockanathan and Jessell, 1998).

What is the source of retinoids responsible for these critical events in motor neuron specification and maintenance? Biochemical, gene expression and genetic studies have shown that retinaldehyde dehydrogenase 2 (RALDH2) is the major retinoid synthetic enzyme present during embryonic development (Zhao et al., 1996; Niederreither et al., 1997, 1999; Swindell et al., 1999; Mic et al., 2002). RALDH2 is found in the meninges surrounding the neural tube, and is dynamically expressed within the paraxial mesoderm directly adjacent to the spinal cord. Initially, paraxial mesoderm-specific expression of RALDH2 is found at all axial levels; however, higher levels of expression are subsequently concentrated at forelimb regions (Niederreither et al., 1997; Berggren et al., 1999; Swindell et al., 1999; Blentic et al., 2003). At later stages of development, RALDH2 is detected within the spinal cord and is localized to LMC motor neurons (Zhao et al., 1996; Sockanathan and Jessell, 1998). Studies of Raldh2 null embryos rescued from early lethality by maternally administered RA confirm that mesodermal and neuronal RALDH2 expression are primarily responsible for retinoid levels within the spinal cord (Mic et al., 2002; Niederreither et al., 2002). Given that RALDH2 expression prior to LMC generation is largely mesodermal, both motor neuron generation and LMC formation are likely dependent on paraxial mesoderm-derived retinoid signaling. In contrast, the specification and maintenance of LMC1 neurons are believed to rely on retinoids generated by early born LMCm neurons. However, at the time of LMC diversification into medial and lateral subtypes, retinoids in the spinal cord derive from both paraxial mesoderm and motor neuron sites of RALDH2 expression (Niederreither et al., 1997, 2002; Berggren et al., 1999; Swindell et al., 1999; Mic et al., 2002; Blentic et al., 2003).

Attempts to define the specific contributions of each retinoid source to LMC subtype specification and LMC maintenance have been stymied by the early lethality of Raldh2 null embryos prior to motor neuron generation (Niederreither et al., 1999). A recent study where Raldh2 expression was genetically ablated in forelimb spinal motor neurons led to a decrease of forelimb LMC1 neurons, supporting the idea that motor neuron sources of RA are partly required for LMC1 specification (Vermot et al., 2005, Fig. 8A). The homeobox protein Hoxc8 is thought to mediate this process as Hoxc8 expression is lost in LMC neurons in mice lacking motor neuron-specific expression of RALDH2, and there are reduced numbers, and aberrant axonal projections of remaining LMC1 cells in Hoxc8 mutants (Vermot et al., 2005). However, one striking observation from these studies is that 80% of LMC1 neurons are preserved in the absence of motor neuron sources of RA. Given that significant amounts of RA within the spinal cord derive from RALDH2 activity in the adjacent paraxial mesoderm, it is possible that RA synthesized in the paraxial mesoderm provides an important source of retinoids for specifying LMC1 identity (Mic et al., 2002; Niederreither et al., 2002). Moreover, the contribution of mesodermal and neuronaly synthesized retinoids to hindlimb LMC development and maintenance of LMC neurons respectively remains unknown.

Here we have used genetic approaches to independently reduce RALDH2 levels in paraxial mesoderm and in spinal motor neurons at forelimb and hindlimb levels of the spinal cord to examine the requirements for mesodermal and neuronal retinoids in LMC specification and maintenance. We find that reduction of RALDH2 in the paraxial mesoderm results in the specific decrease of both forelimb and hindlimb LMC1 neurons, whereas LMCm neurons are unaffected. Thus, RA derived from the mesoderm functions as an additional source of signals to specify LMC1 fates (Fig. 8B). In contrast, knockdown of RALDH2 in postmitotic motor neurons results in reduced numbers of forelimb and hindlimb LMCm and LMC1 neurons later in development, and the atrophy of remaining limb-innervating neurons. This result suggests that continued RA
synthesis in motor neurons may be critical for maintenance of LMC neuronal numbers and properties (Fig. 8C). Given that the majority of remaining forelimb LMC neurons lose Hoxc8 expression, we suggest that Hox proteins may partly mediate the retinoid-dependent maintenance of LMC neurons. Taken together, these genetic studies uncover new roles for mesodermal and neuronal retinoids in the specification, maintenance and survival of spinal motor neurons that target the limb.

Materials and methods

Generation of mouse lines

Raldh2lox line: Mouse genomic clones were isolated from a 129/Sv genomic library (Stratagene) and loxP sites introduced into the Nsil and KpnI sites located 5′ and 3′ of Exon 4. Introduction of a thymidine kinase promoter neomycin/hygromycin cassette into the KpnI site in the reverse direction resulted in an additional EcoRI site within the Raldh2 locus, generating an 11 kb EcoRI band when homologously recombined instead of the wild-type 14 kb band. A 2 kb KpnI fragment outside the targeting construct was used as a 3′ probe. ES cell transfections, screening and injection into blastocysts were carried out according to standard procedures. Raldh2lox/lox lines were generated by integrating a pgk neomycin cassette within the ClaI site of Exon 4. Details for mzd CRE mice are available by request from A. Gossler. Specific primers and PCR protocols used to genotypy Cre, Raldh2lox/lox and Raldh2lox alleles are available upon request. Gtrosa26tm1Sor mice were obtained from Jackson Laboratories. RARE-hspLacZ mice engineered by Rossant et al. (1991) were obtained from C. Mendelsohn with the permission of J. Rossant.

Production of RALDH2 antibodies

A C-terminal mouse RALDH2 peptide (SEVKTVTVKIPQKNS) was coupled to keyhole limpet hemocyanin and injected into guinea pigs (Covance). Sera were affinity purified using a peptide column (ABR).

In situ hybridization and immunohistochemistry

In situ hybridization was performed as described by Schaeren-Wiemers and Gerfin-Moser (1993). The mouse Raldh2 in situ probe consisted of a 937 bp fragment from the ATG. Immunohistochemistry on sections and whole mounts was performed as described in Sockanathan and Jessell (1998) and Giger et al. (2000). Images were acquired using Zeiss LSM 510 or LSM 5 PASCAL confocal microscopes. Primary antibodies were used at the following dilutions: K5 (rabbit anti-Isl1/2), 1:3000; guinea pig anti-Isl1/2, 1:20000; rabbit anti-Pea3, 1:1000 (Arber et al., 1999); rabbit anti-Lhx3, 1:3000 (Sharma et al., 1998); 4F2 (mouse anti-Lim1/2) 1:2, mouse anti-Hoxc8 1:200 (all provided by T.M. Jessell) and 2H3 (anti-neurofilament) 1:50 (Developmental Studies Hybridoma Bank, University of Iowa); guinea pig anti-RALDH2, 1:20000; rabbit anti-RALDH2, 1:2000 (provided by P. McCaffrey); rabbit anti-LacZ, 1:1000 (Cappel, Durham, NC). Beta-galactosidase staining on tissue sections was carried out using the peroxidase-antiperoxidase method. Sections were serially sectioned and an antibody specific to RALDH2 was used to detect the protein by indirect immunofluorescence.

Motor neuron counts

Motor neuron counts were confined to the limb regions corresponding to the entire rostralcaudal extent of the LMC, identified by IsL2/Lim1 neurons. Neurons in approximately 15–18 sections/embryo were counted, depending on developmental stage. Typically 3–6 embryos were analyzed for each experiment.

Western blots

Western blots were performed according to standard protocols and bands were visualized using ECL Plus™ Western Blotting Detection Reagents (GE Healthcare). Densitometry analysis was carried out using ImageJ (NIH). Rabbit anti-RALDH2 antibodies were used at a 1:5000 dilution.

RA bioassay

The RA reporter cell line F9-RARE-lacZ (Sili) was maintained according to standard protocols (Wagner et al., 1992). Tissue preparation and reporter assays were carried out as described by Haselbeck et al. (1997).

Results

Generation of Raldh2 conditional knockout mice

To examine the contribution of mesodermal and neuronal retinoids to LMC specification, we used Cre-lox technology (Rajewsky et al., 1996) to specifically ablate RALDH2 in either the paraxial mesoderm or in spinal motor neurons. Fig. S1 shows the targeting strategy used to introduce lox-P sites flanking exon 4 of one Raldh2 allele in the mouse genome (Raldh2lox/lox). Exon 4 was chosen as it encodes the nicotinamide adenine dinucleotide (NAD) binding domain essential for RALDH2 activity; removal of this exon results in a non-functional RALDH2 enzyme (Niederreither et al., 1999; Vernooy et al., 2003, 2005). Homozygous Raldh2lox/lox mice were crossed to mice that contained a single Raldh2 allele inactivated by insertion of the neomycin gene within exon 4 to generate Raldh2lox/lox mice (Raldh2lox/lox, Fig. S1). Raldh2lox/lox mice were viable, fertile and morphologically indistinguishable from heterozygote littermates, in contrast to Raldh2lox/lox mice which die at embryonic day post-coitum 9 (E9).

Targeted loss of Raldh2 in the paraxial mesoderm

In order to generate embryos with reduced RALDH2 in the paraxial mesoderm, we utilized transgenic mice that expressed Cre recombinase under the control of the “mzd” fragment from the Delta1 promoter (mzd:Cre), which drives heterologous gene expression in the paraxial mesoderm from E7 (Beckers et al., 2000). We first monitored the profile of Cre recombinase activity in mzd:CRE mice by breeding them with mouse reporter lines that express betagalactosidase upon Cre-mediated recombination (Gtrosa26m1Sor; Soriano, 1999). Strong betagalactosidase staining is detected in forelimb level paraxial mesoderm at E9.5 of mzd:Cre+ Gtrosa26m1Sor embryos prior to spinal motor neuron generation, and is maintained until at least E12.5 (Figs. 1A, E, Nornes and Carry, 1978). At these developmental stages, betagalactosidase activity within the spinal cord was localized exclusively within the vasculature. Thus, mzd:Cre+ RALDH2lox/lox embryos should lack RALDH2 in the paraxial mesoderm but preserve LMC-specific expression of the enzyme.

Mzd:Cre+ Raldh2lox/lox embryos are morphologically normal, and survive to birth and adulthood. Embryos were examined at E10.0 and at E12.5 to determine the extent of RALDH2 protein loss in the paraxial mesoderm at forelimb levels compared with Raldh2lox/lox littermates. Forelimb embryonic regions were serially sectioned and an antibody specific to RALDH2 was used to detect the protein by indirect immunofluorescence. Mesodermal RALDH2 expression was significantly diminished in mzd:Cre+ Raldh2lox/lox embryos compared with Raldh2lox/lox littermates at E10.0, a developmental time-point when
RALDH2 is not expressed in the spinal cord (Figs. 1B, F). This decrease was quantified by densitometric analysis of Western blots using protein extracts from embryos dissected at E10. A 55 kDa band corresponding to RALDH2 was reduced by approximately 50% in extracts of msd:Cre+ Raldh2lox/− embryos compared with Raldh2lox/− controls (Fig. 1I). At E12.5, msd:Cre+ Raldh2lox/− embryos showed decreased Raldh2 mRNA and protein expression in the paraxial mesoderm relative to controls; however, no differences were detected in the expression of RALDH2 in LMC neurons (Figs. 1C, D, G, H). Together, these results indicate that msd:Cre+ Raldh2lox/− embryos have diminished levels of RALDH2 expression in the paraxial mesoderm at forelimb levels, but preserve expression of RALDH2 in LMC motor neurons.

We next examined if reduced RALDH2 expression in the paraxial mesoderm led to a measurable drop in RA levels within the spinal cord. Forelimb level spinal cords were dissected from E12.5 msd:Cre+ Raldh2lox/− embryos and Raldh2lox/− littermates, and analyzed using the F9-RARE-LacZ reporter cell line bioassay for measuring RA levels in embryonic tissues (Wagner et al., 1992; McCaffery and Drager, 1994). Tissue homogenates derived from forelimb regions of msd:Cre+ Raldh2lox/− embryos showed a 50% reduction in RA levels compared with those prepared from Raldh2lox/− littermates (Fig. 1J). The remaining 50% of RA in these spinal cords is attributed to preserved RALDH2 expression in LMC neurons, residual retinoids derived from remaining RALDH2 in the paraxial mesoderm and an RALDH2-independent source found in the intermediate (i) region of the spinal cord (Mic et al., 2002; Niederreither et al., 2002). There was no detectable difference in the levels of the i-region RA source between msd:Cre+ Raldh2lox/− and msd:Cre+ Raldh2lox/− E12.5 embryos (mean ± SEM, Student’s t test, *P = 0.001, n = 8 mutants, 4 controls).

RA in the paraxial mesoderm is required for forelimb and hindlimb LMC1 induction

Previous studies in the chick have shown that paraxial mesoderm-derived retinoids are required for generic motor
neuron generation (Diez del Corral et al., 2003; Novitch et al., 2003) and the specification of forelimb LMC neuronal identity (Sockanathan et al., 2003), both of which occur prior to the diversification of medial and lateral LMC neurons. We examined if either of these events was compromised in msd:Cre+ Raldh2lox/− embryos. We first quantified the number of Isl1/2+ motor neurons at forelimb levels in msd:Cre+ Raldh2lox/− embryos compared to Raldh2lox/− littermates at E12.5, after the peak of motor neuron generation (Nornes and Carry, 1978). We detected a small but statistically significant reduction of approximately 10% in total motor neuron numbers in msd:Cre+ Raldh2lox/− embryos compared with controls (Fig. S3). Furthermore, the specification of LMC neuronal identity in msd:Cre+ Raldh2lox/− embryos appeared normal as RALDH2 expression in LMC neurons was not altered and these neurons had not acquired thoracic motor column fates (data not shown).

If reduced RA levels in the spinal cord affect the generation of all motor neurons, the 10% loss of Isl1/2+ neurons should be evenly distributed among all forelimb spinal motor columns of msd:Cre+ Raldh2lox/− embryos. The number of Isl1/2+/Lhx3+ MMCm neurons was the same between msd:Cre+ Raldh2lox/− and control embryos (Figs. 2A–C). Similarly, no reduction of Isl2+/Lmx3+/Lim1− LMCm neurons was observed (Fig. S3). However, the number of Isl2+/Lim1+ LMCI neurons was reduced by approximately 20% in msd:Cre+ Raldh2lox/− embryos compared with controls (Figs. 2D–F). Consistent with this, we observed a 40% reduction of an LMCI-specific motor pool marked by expression of the ETS transcription factor Pea3 (Lin et al., 1998; Livet et al., 2002), but no changes were apparent within the larger LMCm Pea3+ motor pool present at forelimb levels (Figs. 2G–I; Fig. S3). In addition, we detected a decrease in the number of Hoxc8 expressing LMCI neurons but Hoxc8 expression in LMCm neurons was unaffected (data not shown). The specific decrease of LMCI neurons was also observed at E11.5, during the peak period of LMCI generation (data not shown). No evidence of increased cell death was detectable by terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling (TUNEL) between msd:Cre+ Raldh2lox/− and Raldh2lox/− controls, consistent with a defect in LMCI generation (data not shown).

Fig. 2. Forelimb LMCI induction is dependent on paraxial mesoderm-derived RA. Images are confocal micrographs of ventral right quadrants of sectioned mouse forelimb spinal cord at E12.5. In all graphs, mean ± SEM. (A, B) Confocal micrographs of MMCm neurons (yellow cells) outlined by hatched white line. (C) Graph of MMCm neuron numbers (Student’s t test, *P = 0.471, n = 3 mutants, 4 controls). (D, E) Confocal micrographs of LMCI neurons (yellow cells) outlined by hatched white line. (F) Graph of LMCI neuron numbers (Student’s t test, *P = 0.001, n = 3 mutants, 4 controls) in msd:Cre+ Raldh2lox/− versus Raldh2lox/− siblings. (G, H) Confocal micrographs showing Pea3+ LMCI motor pool outlined by hatched white line. (I) Graph of Pea3+ LMCI neuron numbers (Student’s t test, *P = 0.04, n = 3 mutants, 4 controls).
We next examined if msd:Cre\(^+\) Raldh\(^{-}\)embryos at E12.5 showed similar effects on motor neuron specification at hindlimb levels of the spinal cord. As observed at forelimb regions, the number of Is1/2/\(Lhx3\)\(^+\) MMCm motor neurons was unchanged between msd:Cre\(^+\) Raldh\(^{-}\)embryos and control littermates (Figs. 3A–C). No apparent difference was evident in the number of Is1/2/\(Lhx3\)/Lim1\(^-\)LMCm neurons (data not shown). However, there was a 14% decrease of Is1/2\(^+\)/Lim1\(^+\) LMCl neurons in msd:Cre\(^+\) Raldh\(^{-}\)embryos compared with Raldh\(^{-}\)littermates (Figs. 3D–F).

Together, these results indicate that spinal cords of msd:Cre\(^+\) Raldh\(^{-}\)embryos contain enough retinoids to enable motor neurons to form and acquire LMC identity. However, RA levels in these embryos are sufficiently reduced to uncover a requirement for paraxial mesoderm-derived retinoids in specifying LMCl identity at forelimb and hindlimb levels of the spinal cord.

Dorsal axonal projections are compromised in msd:Cre\(^+\) Raldh\(^{-}\)embryos

Besides being molecularly distinct, LMCm and LMCl neurons can be distinguished by their stereotypic projections to ventral and dorsal target muscles respectively in the limb (Hollyday, 1980a,b, 1990; Tosney and Landmesser, 1985a,b). Given that the ablation of RALDH2 in motor neurons elicits a similar 20% decrease of LMCl neurons but also results in the atrophy of distal nerve projections of LMCl neurons (Vermot et al., 2005), we examined if msd:Cre Raldh\(^{-}\)mutants showed similar peripheral defects in neurons innervating target muscles in the forelimb at E12.5. In msd:Cre\(^+\) Raldh\(^{-}\)embryos, the initial outgrowth and formation of the dorsal–ventral branches of forelimb-innervating neurons detected by neurofilament staining appeared grossly normal (Fig. 4). However, closer examination showed stunting of the fine branches of dorsally projecting neurons of the radial and ulnar nerves (Figs. 4B–D, F–H), whereas ventrally projecting medial and ulnar nerves remained unaffected (Figs. 4A, E). The penetrance of the phenotype was 100% and was not detected in control embryos. The observation that dorsal and not ventral fine branching is affected in msd:Cre\(^+\) Raldh\(^{-}\)embryos is consistent with perturbations in LMCl and not LMCm development. Moreover, these phenotypes are unlikely to be a result of a general disruption of limb development due to a reduction of RALDH2 in the target, as initial neuronal outgrowth and dorsal–ventral pathways are preserved, ventrally projecting neurons appear normal, and msd:Cre\(^+\) Raldh\(^{-}\)adults do not exhibit digit malformations or abnormal flexure of the distal limbs (data not shown). These results, together with the molecular analyses described above, indicate that mesodermally derived retinoids in the spinal cord are required for the specification of LMCl neurons that innervate dorsal muscles in the limb.

Targeted ablation of RALDH2 in spinal motor neurons

Previous studies suggest that, in addition to LMCl specification, motor neuron sources of RA are required for maintaining the properties of LMCl neurons (Sockanathan and Jessell, 1998). However, this has not been tested in vivo, and it is not known if the maintenance of LMCm neurons is retinoid-dependent. In order to test if LMC-derived retinoids contribute to the maintenance of LMCm and LMCl neurons, we crossed Raldh\(^{-}\)mice with...
Isl1:Cre animals. Isl1:Cre mice express Cre recombinase within motor neurons and a small population of dorsal interneurons in the spinal cord, but lack expression in the adjacent paraxial mesoderm (Pfaff et al., 1996; Srinivas et al., 2001). Given the temporal and spatial expression of Cre recombinase in this line, effective recombination of the Raldh2lox allele in motor neurons is likely to occur after LMCm and LMCl specification has taken place, whereas RALDH2 expression in the paraxial mesoderm should be unaffected. Isl1:Cre + Raldh2lox/− embryos appear normal, survive to birth and into adulthood and are largely indistinguishable from Raldh2lox/− controls.

To assess the extent of RALDH2 loss mediated by Cre recombination in spinal motor neurons, we examined RALDH2 protein by indirect immunofluorescence using RALDH2 specific antibodies in Isl1:Cre + Raldh2lox/− and Raldh2lox/− littermates at E12.5. No difference in mesodermal RALDH2 staining was detected between the embryos; however, a marked loss of RALDH2 expression was consistently observed in LMC neurons of Isl1:Cre + Raldh2lox/− embryos (Figs. 5A, B). We quantified the amount of RALDH2 protein in forelimb level spinal cords dissected from Isl1:Cre + Raldh2lox/− and Raldh2lox/− littermates by densitometric analysis of Western blots, and found a 60% reduction of RALDH2 protein in Cre+ embryos compared to controls (Fig. 5C).

We next determined the extent of RA loss in forelimb-level spinal cords dissected from Isl1:Cre + Raldh2lox/− and Raldh2lox/− littermates at E13.5 using the F9 RARE-LacZ retinoid-responsive reporter cell line (Wagner et al., 1992; McCaffery and Drager, 1994). Ventral spinal cord extracts derived from Isl1:Cre + Raldh2lox/− embryos were found to have approximately 65% less RA than Raldh2lox/− littermates (Fig. 5D).

Taken together, these results show that RALDH2 expression and RA levels in postmitotic motor neurons are significantly decreased in Isl1:Cre + Raldh2lox/− embryos compared with control siblings.
dependent upon motor neuron sources of RA. Thus, any decrease of LMCm neurons in Isl1:Cre⁺ Raldh₂lox[−] embryos can be attributed to a requirement for RA in LMCm maintenance whereas a decrease in LMCl neurons could potentially arise from an earlier effect on specification. We therefore examined if LMCl specification was altered in Isl1:Cre⁺ Raldh₂lox[−] embryos at E11.5 and E12.5, which are developmental time-points spanning the peak period of LMCl specification. No differences in the number of LMCl neurons were found at either time-point, suggesting that LMCl specification is not affected in Isl1:Cre⁺ Raldh₂lox[−] embryos compared with control littermates (Fig. S4). The preservation of LMCl specification in these embryos is likely due to sufficient concentrations of RA generated by the paraxial mesoderm, and residual RALDH2 activity in spinal motor neurons. Thus Isl1:Cre⁺ Raldh₂lox[−] embryos provide a good in vivo system to investigate the requirement for RA signaling in postmitotic motor neuron maintenance.

In order to assess if motor neuron sources of RA are required to maintain LMCm and LMCl neuronal numbers, we examined Isl1:Cre⁺ Raldh₂lox[−] embryos and Raldh₂lox[−] littermates at E13.5, when LMC subtype specification is complete. Analysis of LMCm neurons at forelimb levels showed that the number of Isl[−]/Lhx3[−]/Lim1⁺ neurons was reduced by approximately 30% in Isl1:Cre⁺ Raldh₂lox[−] embryos compared with Raldh₂lox[−] controls (Figs. 6A–C). Although there was no change in the number of LMCl neurons at E12.5, Isl1:Cre⁺ Raldh₂lox[−] embryos showed a 25% reduction of forelimb Isl2[−]/Lim1⁺ neurons compared with Raldh₂lox[−] controls at E13.5 (Figs. 6A, B, D). A corresponding decrease of the forelimb motor pool markers, Pea3 and Sema3E, that span both LMCm and LMCl columns was also detected (data not shown; Livet et al., 2002). Taken together, these results indicate that retinoids synthesized by spinal motor neurons are required for the maintenance of LMCm and LMCl neuronal numbers.

Isl1:Cre⁺ Raldh₂lox[−] embryos show abnormal axonal projections and loss of Hoxc8

Given the decrease of LMCm and LMCl neurons in Isl1:Cre⁺ Raldh₂lox[−] embryos, we examined if the patterns of axonal projections of limb-innervating neurons in these embryos were affected by reduced levels of RA in motor neurons. In Isl1:Cre⁺ Raldh₂lox[−] embryos at E13.5, the overall outgrowth and formation of the dorsal and ventral axonal branches within the forelimb appeared similar to Raldh₂lox[−] controls. However, we found that both ventral and dorsal projecting neurons were stunted or atrophied and in some cases appeared retracted (Figs. 7A–F). These peripheral defects are more severe than the abnormalities observed in msd:Cre⁺ Raldh₂lox[−] embryos and may reflect an erosion of the properties of these remaining LMC neurons.

Mice lacking the homeotic protein Hoxc8, show incomplete LMCl specification, but also show increased apoptosis of LMC neurons and altered topographic maps of motor pools (Tiret et al., 1998; Vermot et al., 2005). It is therefore possible that the defects observed in Isl1:Cre⁺ Raldh₂lox[−] embryos result from the inability to maintain Hoxc8 expression in motor neurons due to
decreased levels of RA synthesized in these cells. Analysis of Hoxc8 expression in forelimb spinal motor neurons of E13.5 *Isl1:Cre*^+^ Raldh2lox/− embryos showed fewer Hoxc8+ motor neurons compared with controls, and this loss corresponded to the decrease of LMCm and LMCl neurons described earlier. In addition, the levels of Hoxc8 expression were significantly decreased in the majority of LMCm and LMCl neurons that remained (Figs. 7G, H). These observations suggest that sustained expression of Hoxc8 in motor neurons by RA-dependent mechanisms may be required for the maintenance of limb-innervating spinal motor neurons.

Discussion

LMCm and LMCl motor neurons are generated specifically at limb levels of the spinal cord and project their axons to ventral and dorsal limb muscles, respectively (Jessell, 2000; Shirasaki and Pfaff, 2002; Price and Briscoe, 2004). Previous studies focusing on forelimb LMC specification have implicated retinoids synthesized by early born LMCm neurons as being necessary for inducing the identity of late born LMCl neurons (Sockanathan and Jessell, 1998; Vermot et al., 2005, Fig. 8A). Using mouse genetics, we show here that RA synthesized in the paraxial mesoderm functions as a second source of signals to specify LMCl neurons at both forelimb and hindlimb levels of the spinal cord (Fig. 8B). Furthermore, we define later roles for retinoids synthesized by motor neurons in maintaining appropriate numbers of LMCm and LMCI cells, and in preserving the axonal integrity of these neurons (Fig. 8C). These studies suggest that mesodermal and neuronal retinoid sources act coordinately to establish and maintain appropriate cohorts of limb-innervating motor neurons in the spinal cord.
Paraxial mesoderm-derived retinoids and LMC subtype specification

Studies in the chick have led to a model of LMCl specification where early born LMCm neurons express RALDH2 and provide a motor neuron source of RA at limb levels of the spinal cord. Late born LMC cells are exposed to these RA signals as they migrate through the LMCm population to reach their lateral settling position, and consequently acquire LMCl neuronal identities (Sockanathan and Jessell, 1998). In support of this model, a recent study inactivating RALDH2 in motor neurons at forelimb levels resulted in a 20% loss of LMCl neurons (Vermot et al., 2005). However, a significant number of LMCl neurons are still generated in these animals, indicating that other signals are required to specify the normal complement of LMCl neurons. Moreover, the rostral–caudal restriction of Cre expression in these animals prevents the analysis of LMCl specification at hindlimb levels of the spinal cord, restricting the authors’ analysis to forelimb regions.

Retinoids synthesized by RALDH2 in the paraxial mesoderm are known to contribute significantly to RA levels within the spinal cord (Mic et al., 2002; Niederreither et al., 2002). Consequently, mesodermally derived retinoids may potentially provide an additional source of signals to specify LMCl neuronal identity. One approach to test this hypothesis is to ablate RALDH2 expression in the paraxial mesoderm and examine if LMCl specification is compromised. However, studies in the chick and in Vitamin A-deficient animals have identified a requirement for mesodermally derived retinoids in the generation of generic motor neurons, and the imposition of forelimb LMC columnar identity (Novitch et al., 2003; Diez del Corral et al., 2003; Sockanathan et al., 2003). Thus, complete ablation of RA in the mesoderm is likely to result in either a severe loss of motor neurons or the adoption of thoracic motor column fates, confounding an analysis of LMCl specification. In our study, msd:Cre⁺ Raldh2lox/− mice provide a useful model to test if retinoids from the adjacent paraxial mesoderm are required for the specification of LMCl neurons in vivo. An added advantage of these animals is that both forelimb and hindlimb LMCl development can be assessed.

We find that, in msd:Cre⁺ Raldh2lox/− embryos, the number of LMCl neurons is decreased at both forelimb and hindlimb levels of the spinal cord, whereas LMCm and MMCm neurons are unaffected. Thus, our study indicates that retinoids derived from the paraxial mesoderm provide a second source of RA to establish the normal complement of LMCl neurons, and these signals operate at both forelimb and hindlimb levels. We suggest a model where LMCl specification is dependent upon paracrine retinoid signals, and the contribution of mesodermal and neuronal sources differs depending on their relative contributions to RA levels within the spinal cord at a given time (Fig. 8B). Thus, at early developmental stages, prior to the establishment of a critical number of RALDH2 expressing LMCm neurons, paraxial mesoderm-derived retinoids may provide the main source of retinoids that specify LMCl neurons in vivo. When mesodermal RA sources decline and LMCm neurons increase in number, RA synthesized by motor neurons plays a more prominent role in specifying LMCl identities. This interplay provides another example where mesodermal signals initiate cell fate specification events in the spinal cord prior to the consolidation of a second signaling center that operates within the neural tube itself (Jessell, 2000).

Motor neuron-derived retinoids and the maintenance of LMCm and LMCl neurons

Chick neural explant studies have suggested that RA signaling is required for the maintenance of LMCl neurons (Sockanathan and Jessell, 1998); but, a potential role for retinoids in motor neuron maintenance has not been tested.

![Fig. 8. Model for RA signaling in LMCl specification and LMC maintenance. RA signals from early born LMCm neurons expressing RALDH2 (blue) are required for LMCl specification (red arrows, A, B). However, RA derived from RALDH2 expression in the adjacent paraxial mesoderm (PM, blue) also functions to induce LMCl identity and may form the primary source of RA prior to the establishment of sufficient local concentrations of retinoids by LMCm neurons (red arrow, B). After specification is complete, both LMCm and LMCl neurons express RALDH2 (blue) and synthesize RA, which is required to maintain LMCm and LMCl neuronal numbers but not that of adjacent MMCm neurons (green arrows, C).](image-url)
genetically in mammalian model systems. By reducing RALDH2 levels in motor neurons once they are postmitotic, we find that RA synthesized by motor neurons is required for maintaining forelimb and hindlimb LMCm and LMCl neuronal numbers, whereas adjacent MMCm neurons are unaffected. Interestingly, no effect on LMCm numbers is observed in msd: Cre⁺ Raldh_{2lox/lox}−/− embryos although the spinal cords of these embryos have lower overall RA levels compared with Isl1: Cre⁺ Raldh_{2lox/lox}−/− embryos (50% versus a 35% reduction, S.J. and S.S. unpublished data). This observation suggests that local, short-range RA signals may operate to maintain LMC numbers and raises the possibility that this might occur through cell-autonomous mechanisms.

Our studies suggest that genes downstream of RA signals act specifically to maintain spinal motor neurons that innervate the limb. What are the molecules that mediate motor neuron maintenance? In the case of LMC neurons, we suggest that Hoxc8 may be required to maintain LMC neurons at posterior forelimb levels of the spinal cord. Interestingly, Hoxc8 also acts earlier to specify LMCl identity (Vermot et al., 2005). This dual role for Hoxc8 is supported by analyses of Hoxc8 knockout mice which show defects in motor neuron specification, altered somatotopic projection maps and increased cell death (Tiret et al., 1998; Vermot et al., 2005). Hoxc8 expression in motor neurons is restricted to the C7, C8 and T1 regions at forelimb levels of the spinal cord (Tiret et al., 1998; Dasen et al., 2003) suggesting that other proteins must mediate the maintenance of anterior forelimb and hindlimb LMC neurons. Since the expression of Hox gene clusters span distinct regions of the spinal cord, it is possible that different Hox proteins may function downstream of RA signaling to maintain LMC neurons at other axial levels (Carpenter, 2002). Of note, Hox proteins involved in fate specification may not always have a second function in motor neuron maintenance. Two examples are Hoxd10 and Hoxa10 which are expressed in lumbar LMC neurons, have roles in hindlimb LMC specification (Lin and Carpenter, 2003; Shah et al., 2004) but are largely down-regulated in spinal motor neurons at later stages of development (Choe et al., 2006).

What are the cellular processes affecting maintenance that might be impacted by decreased retinoid signaling in motor neurons? Potential pathways include those mediating programmed cell-death and cell-survival through the action of target-derived neurotrophic factors (Buss and Oppenheim, 2004; Zweifel et al., 2005). Neurotrophic factors such as NT3 and NGF bind to members of the Trk family of receptors to mediate cell survival, partly through the antagonism of cell death pathways (Zweifel et al., 2005). RA has the capability to regulate and stabilize the expression of TrkA, TrkB and p75 receptors in cell lines raising the compelling possibility that RA signaling may mediate motor neuron survival through similar mechanisms in vivo (Scheibe and Wagner, 1992; Lucarelli et al., 1995; Xie et al., 1997). Interestingly, the requirement for RA signaling in motor neurons may extend to adulthood, as adult rats deprived of Vitamin A undergo motor neuron degeneration (Corcoran et al., 2002). Although in this case, the loss of RA is not confined to motor neurons, it is possible that continuous RA synthesis in motor neurons is necessary for the maintenance and survival of motor neurons throughout life.

In summary, we have utilized genetic approaches to define new roles for mesodermal and motor neuron sources of RA in the specification and maintenance of limb-innervating motor neurons of the spinal cord. This work leads to a revised model of LMCm and LMCl development, where RAs in the spinal cord derived from adjacent paraxial mesoderm and motor neurons function together to specify the correct complement of LMCm neurons. Retinoids synthesized by motor neurons have additional roles later in development to maintain appropriate numbers of LMCm and LMCl neurons. The identification of retinoid-responsive downstream pathways that mediate these critical events in motor neuron specification and maintenance will be essential to understand the molecular mechanisms by which retinoids govern neuronal identity, maintenance and survival.

Acknowledgments

We thank T.M. Jessell for the Isl1:Cre mouse line and antibodies, C. Mendelsohn and J. Rossant for RARE-hspLacZ mice, P. McCaffery for antibodies and the RARE-lacZ reporter cell line, and T.M. Jessell, A. Kolodkin, F. Rajaii and M. Rao for critical reading of the manuscript and scientific discussions. The generation of the Raldh2^{+/−} and Raldh2^{lox/lox} lines was carried out in the laboratory of T.M. Jessell together with B. Han and M. Mendelson. This work was funded by grants from the German Research Council (DFG) to A.G.; and the Whitehall Foundation, Muscular Dystrophy Association and NINDS to S.S.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.ydbio.2006.05.015.

References

Corcoran, J., So, P.L., Maden, M., 2002. Absence of retinoids can induce...

