JHU Logo
Neuroscience Logo
Home » Resources » Directory » Faculty » Angelika Doetzlhofer »

Angelika Doetzlhofer Ph.D

Assistant Professor of Neuroscience

adoetzl2@jhmi.edu
Telephone Number: 410-614-9215
Fax Number: 410-614-8033
The Solomon H. Snyder Department of Neuroscience
Johns Hopkins University
School of Medicine
855 North Wolfe St.
Baltimore, MD 21205
Room: Rangos 433
Graduate Program Affiliations:

Neuroscience Graduate Program


Cell specification and differentiation in the mammalian auditory system

Auditory hair cells, located in the inner ear cochlea are critical for our ability to detect sound.

In mammals, neural innervated hair cells come in two flavors: inner hair cells, which are our primary mechanoreceptor and relay sound information to the brain and the signal amplifying outer hair cells. Inner and outer hair cells are structurally and functionally supported by different types of glial like supporting cells with which they share a close lineage relationship. Despite their importance for our ability to hear, little is known about how the different hair cell and supporting cell lineages are specified and what molecular cues trigger their differentiation. A main goal of my laboratory is to identify and characterize the molecular mechanisms underlying hair cell and supporting cell specification and differentiation in the mammalian auditory system.

                                                   

An associated interest is to identify the molecular roadblocks preventing mammalian hair cell regeneration. In mammals, hair cell generation is limited to embryonic development. Lost hair cells are not replaced leading to deafness and balance disorders. However, in non-mammalian vertebrates, supporting cells undergo a process of de-differentiation after hair cell loss, and are able to replace lost hair cells by either cell division or direct trans-differentiation. We recently showed that purified mammalian supporting cells retain some hair cell progenitor-like qualities and are able to trans-differentiate into hair cell in vitro. These results suggest that the lack of mammalian hair cell regeneration is likely due to an absence or blockage of regenerative signals.

Currently projects in the laboratory address: 1) Function of Hes and Hey transcription factors in supporting cell differentiation and maintenance; 2) Extracellular signals, that control supporting cell maintenance and potentially limit hair cell regeneration; 3) Identification of nuclear factors that control specification of hair cell and supporting cell subtypes.  Our investigations make use of mouse genetic approaches, including inner ear-specific conditional gene targeting and in vitro manipulations of gene function in cochlea tissue and primary cell culture systems.