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Abstract Autism is an umbrella diagnosis with several
different etiologies. Fragile X syndrome (FXS), one of the
first identified and leading causes of autism, has been
modeled in mice using molecular genetic manipulation.
These Fmr1 knockout mice have recently been used to
identify a new putative therapeutic target, the metabotropic
glutamate receptor 5 (mGluR5), for the treatment of FXS.
Moreover, mGluR5 signaling cascades interact with a
number of synaptic proteins, many of which have been
implicated in autism, raising the possibility that therapeutic
targets identified for FXS may have efficacy in treating
multiple other causes of autism.
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Introduction

Leo Kanner first described autism in 1943 [1]. It wasn’t
until 1980 however, that autism was formally recognized in
the Diagnostic and Statistical Manual of Mental disorders
(DSM-III), and included as part of a new class, the Pervasive
Developmental Disorders (PDD) [2]. At the same time,
early psychodynamic theories of the etiology of autism [3]
were being abandoned in favor of genetic ones. As early as
1975, case reports of monozygotic twins concordant for
autism [4], followed by several systematic twin studies [5–
10] substantiated the strong heritability of autism [11–13].

Standardization of diagnostic criteria [2], and improve-
ments in our ability to reliably detect chromosomal abnor-
malities [14] allowed for the identification in the early
1980’s of the first genetic cause of autism—Fragile X
syndrome (FXS) [15–17]. Subsequently, the Fragile X gene
(FMR1) was discovered [18], and by 1994 the first animal
model became available [19]. This genetically engineered
Fmr1 knockout mouse (Fmr1 KO), has been validated for
FXS, and is currently one of the leading animal models of
autism [20].

Using this mutant mouse, we have been able to address
the role of the FMR1 gene and the protein it encodes
(fragile X mental retardation protein, FMRP) in brain de-
velopment. Now, over 25 years since FXS was identified as a
cause of autism, a new putative therapy has been proposed
based on our understanding of the function of FMRP.

Modeling autism: a derailment of synaptic plasticity

Inherited mutations have the potential to disrupt brain
development from the moment of fertilization onward;
however, a genetic etiology does not preclude pathogenesis
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involving regulated processes later in development. Symp-
toms of autism typically present during the early postnatal
period, usually between ages 1–3 years [20]. This epoch,
the so-called ‘critical period’ [21], corresponds to a dy-
namic phase of brain development in which neurite
outgrowth, maturation of inhibition and signaling, axon
myelination, and synaptic plasticity are set in motion by the
complex interplay of molecular genetic programs and
experience [22]. Disruption of any of one of these processes
could hypothetically lead to the characteristic symptoms of
autism, which include abnormal social interaction and
communication, stereotyped repetitive behaviors, often with
co-morbid mental retardation, epilepsy, sleep disturbances,
attention deficit and hyperactivity [23]. Thus, it has been
tempting to speculate that the pathogenesis of autism
involves a derailment of at least one of these developmental
processes [24–26]. Given this framework, studies of
synaptic plasticity in the Fmr1 KO mouse have been an
obvious priority.

A potential breakthrough in understanding the patho-
genesis of fragile X came from studies of group 1
metabotropic glutamate receptors (Gp1 mGluR) [27–31].
Gp1 mGluRs (which are further subdivided into mGluR1
and mGluR5 subtypes) couple to postsynaptic Gq-like G-
proteins and phospholipase C (PLC) [32] as well as to
extracellular signal-regulated kinase (ERK) transduction
pathways [33, 34]. Their activation leads to the synthesis of
new protein at the synapse [28, 35, 36], likely through the
ERK signaling cascade [37, 38]. A functional consequence
of Gp 1 mGluR-dependent protein synthesis in the hippo-
campus is long-term depression (LTD), a form of synaptic
plasticity [29]. In the Fmr1 KO mouse, this mGluR-LTD is

exaggerated and no longer protein synthesis-dependent
[31, 39].

Meanwhile, studies of FMRP revealed that the expres-
sion of the protein is developmentally regulated [40, 41],
such that in the post-natal brain it is largely cytoplasmic
[42, 43], predominantly expressed in neurons [44, 45] and
enriched postsynaptically at glutamatergic synapses [46].
Furthermore, FMRP is an RNA binding protein that co-
localizes with polyribosomes [44, 47–55] which are found
at the base of dendritic spines where they are thought to
mediate local translational control of the synapse [56].
Indeed, both in vitro and in vivo metabolic labeling studies
have now directly shown that FMRP functions as a
repressor of protein synthesis [57–60].

Taken together, these findings led to the hypothesis that
Gp1 mGluRs and FMRP might work in functional
opposition to regulate mRNA translation at the synapse,
and that in the absence of FMRP, unchecked mGluR-
dependent protein synthesis leads to the pathogenesis of the
disease (Fig. 1) [61]. We have recently tested this so-called
‘mGluR theory’ and shown that increased levels of protein
synthesis in the Fmr1 KO mouse [59, 60], are restored to
wild type (WT) levels by selective reduction of mGluR5
signaling [60]. This manipulation also significantly
decreases the magnitude of Gp1 mGluR-LTD in Fmr1
KO mice, confirming the role of mGluR5 in producing the
exaggerated synaptic plasticity phenotype [60].

The synapse is too small to be directly visualized by
light microscopy. However, dendritic spines (the postsyn-
aptic half of an excitatory synapse) can be visualized, and
are used to estimate the number of excitatory synapses in
the brain. Dendritic spines are highly modifiable structures,
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Fig. 1 Opponent regulation of protein synthesis by FMRP and GpI
mGluRs. FMRP is a negative regulator of translation at the synapse.
Stimulation of GpI mGluRs with DHPG leads to the synthesis of
proteins. Furthermore, many of the long-term consequences of Gp1
mGluR activation are protein synthesis dependent. The mGluR theory
posits that in the absence of FMRP, as is the case in Fragile X
syndrome, this balance between FMRP and Gp1 mGluRs is lost, and

unchecked protein synthesis at the synapse leads to the characteristic
features of the disease. Furthermore, this balance could be restored by
reducing Gp1 mGluR activity at the synapse, by either knockdown or
pharmacological blockade of the receptor. The therapeutic implication
of the theory is that symptoms of FXS syndrome could be corrected
by appropriate modulation of GpI mGluR signaling
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and changes in spine density and morphology have been
correlated with synaptic plasticity [62]. Furthermore,
abnormalities in dendritic spine morphology have long
been associated with human mental retardation of unknown
etiology [63], as well as with XLMR (x-linked mental
retardation) [64], Down [65], Patau [65], Rett [66] and
Fragile X syndromes [67, 68].

Dendritic spine structure is regulated by Gp1 mGluRs.
Application of the selective mGluR5 agonist, DHPG, to
cultured hippocampal neurons induces a protein synthesis
dependent increase in the density of long thin spines [69].
Because DHPG application in cell culture also induces
rapid protein synthesis dependent internalization of AMPA
and NMDA receptors [70], receptor internalization may be
the prelude to morphologic remodeling in response to
plasticity inducing stimuli.

This response to stimulation with DHPG parallels spine
changes seen in the Fmr1 KO mice, which lent support to
the theory that exaggerated signaling through mGluR5 in
the absence of FMRP could account for this morphologic
correlate of synaptic plasticity [61]. Consistent with this
idea, recent studies have shown that that AMPA receptor
internalization is exaggerated in the absence of FMRP [71]
and both this and the increased spine density phenotype
seen in Fmr1 KO mice [60, 72–78] are rescued by selective
reduction in mGluR5 signaling [60, 71].

Modeling autism: plasticity in vivo

While these in vitro and ex vivo demonstrations of
opponent regulation by FMRP and mGluR5 provided the
necessary foundation for identifying and correcting synap-
tic abnormalities, we also wanted to determine whether
these interactions regulate circuit-level responses in the
intact animal. Landmark studies of in vivo ocular domi-
nance plasticity (ODP) in monkeys and cats [79–81]
established a role for experience dependent plasticity in
shaping the circuitry of the brain during the critical period.
Moreover, because ODP occurs on the biologically relevant
timescale, in response to perturbations of environmental
stimuli using intrinsic patterns of neuronal activity, this
paradigm is more readily translated to future studies in
human patients (e.g. using visually evoked potentials [82]
or transcranial magnetic stimulation [83]).

The development of transgenic technologies [19, 84, 85]
and adaptation of the ODP paradigm to rodents [86–91] has
allowed us to answer mechanistic questions about experi-
ence dependent plasticity in vivo. For example, ODP is in-
part mGluR5 dependent [60], requires protein synthesis
[92], and signals through ERK transduction [93]. In the
Fmr1 KO mouse, this plasticity is exaggerated, such that
bidirectional modifications that require 7 days of monocular

deprivation (MD) in WT mice [91], occur after only 3 days
in the absence of FMRP [60]. Significantly this hyper-
plastic response is reminiscent of the exaggerated synaptic
plasticity phenotype seen in the hippocampal slice [31], and
is likewise restored to WT levels by 50% reduction of
mGluR5 signaling [60].

Modeling autism: behavioral phenotypes

As mentioned above, epilepsy and mental retardation are
both co-morbid features of autism [23]—an estimated 5–
38% of autistic patients have seizure or subclinical epilep-
tiform activity [94] while 70% have cognitive impairment
[95, 96](but see, [97][98]). Thus, an important goal for
modeling the disease is to establish behavioral tasks that
recapitulate these symptoms in the Fmr1 KO mouse.

An estimated 20% of human patients with FXS have
epileptiform activity or generalized seizure [99, 100].
Audiogenic seizure (AGS) is a robust paradigm for
inducing seizure in the Fmr1 KO [60, 101–105] and
recapitulates this neurologic feature of FXS and autism.
Previous studies have not been able to account for
increased epileptiform activity in Fmr1-KO mice by any
of the anticipated mechanisms. For example, no differences
have been observed between WT and Fmr1-KO mice in
basal synaptic transmission, excitability, paired pulse
facilitation, and long-term potentiation in the CA1 region
of the hippocampus [106, 107].

Interestingly, it has been shown that agonists of group I
mGluRs act as convulsants in rodents [32, 108] while
selective Gp I mGluR antagonists block seizures in a range
of rodent models of epilepsy [105, 109, 110]. Increases in
epileptiform activity in response to mGluR5 stimulation are
protein synthesis dependent [111, 112], suggesting that in
addition to synapse specific changes, circuit level modula-
tion of excitability is sensitive to the state of mGluR5
dependent protein synthesis [113]. Consistent with this
idea, AGS seen in the Fmr1 KO is attenuated by 50%
reduction of mGluR5 signaling [60].

Despite the moderate to severe mental retardation seen in
human patients with FXS [114], cognitive phenotypes in
the Fmr1 KO mice have been difficult to model [107, 115–
117]. Inhibitory avoidance (IA) is a contextual (fear)
conditioning paradigm used in animals to test hippocampus-
based associative learning and memory [118]. IA extinction
(IAE) is a paradigm that tests those conditioned responses in
the face of contradictory contextual (safe) conditioning
[119]. While IA learning is normal in Fmr1 KO mice on
the C57-Bl6 background [19, 60], we have recently
identified an IAE phenotype in the Fmr1 KO [60].

Although the synaptic mechanisms underlying IAE are
not currently known, this behavior, like mGluR5-LTD, is
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protein synthesis dependent [119]. Furthermore, since both
mGluR5-LTD and IAE are exaggerated in the Fmr1 KO
mice and rescued by reduction of mGluR5 signaling [60],
one interesting possibility is that mGluR5 LTD is the
cellular mechanism subserving IAE learning. This mecha-
nism is likely distinct from that which subserves IA, since
IA training induces NMDA-LTP [120]and neither IA nor
NMDA-LTP [106, 107] is disrupted in the Fmr1 KO on the
C57-Bl6 background.

Therapeutic implications

In summary, we have discovered that FMRP is a protein
that acts to regulate protein synthesis and synaptic plasticity
triggered by Gp1 mGluRs. Understanding this balance
between FMRP and mGluR-5 has allowed us to restore
normal function in the Fmr1 KO model of autism—
metabolic, morphologic, synaptic, circuit, and behavioral
disruptions can all be corrected by reducing mGluR5
signaling by 50% [60]. Currently clinical trials based these
and related findings are under way to determine safety and
efficacy of mGluR modifying drugs in human patients with
FXS and autism.

To put these findings in context, it is important to
remember that mGluRs and FMRP do not exist in isolation
at the synapse. As shown in Fig. 2, a number of other
synaptic proteins that interact with the mGluRs either by

direct physical contact or biochemical cascades, have also
been identified as autism candidate genes [121–126] or
single gene disorders associated with autism [127–134].

For example, Gp1 mGluR signaling converges on
transduction cascades also implicated in PTEN hamartoma
syndrome and Tuberous sclerosis complex (TSC), which
are other single gene causes of autism. PTEN inhibits
PI3K-dependent signaling, which couples Gq signaling to
the mTOR/S6K pathway for protein synthesis [128]. TSC
1/2 inhibits this same mTOR pathway, by acting as a
GTPase-activating protein for the Ras-related small G
protein Rheb [135].

Structural proteins within the synapse also interconnect
Gp1 mGluRs to various autism candidate genes. For
example, both Shank and Homer proteins crosslink
mGluR5 to the postsynaptic density [136], and misregu-
lated Homer1b and PSD-95 have been implicated in the
pathogenesis of FXS [137, 138]. The Neuroligin/Neurexin
complex, important for synapse formation and implicated in
autism, is in turn tethered to the synapse via its interaction
with PSD-95 [125]. AlphaCaMKII, a major regulatory
protein in synaptic plasticity [139] is also tethered to the
synapse by PSD-95; absence of inhibitory phosphorylation
of alphaCaMKII byUBE3a, has been implicated in Angelman
syndrome [132]. Interestingly, mGluR5 stimulated protein
synthesis of alphaCaMKII and PSD-95 are impaired in
synaptoneurosomes from Fmr1 KO mice [140]. Further-
more, CAMKII dependent phosphorylation of MeCP2 links
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Fig. 2 Autism as a synapsop-
athy. mGluR5 interacts with a
number of postsynaptic proteins.
Some of these have been iden-
tified as autism candidate genes
(shown in purple; HOMER,
SHANK, Neuroligin, Neurexin);
others are proteins associated
with single gene causes of au-
tism (shown in red: FMRP/FXS,
TSC/Tuberous Sclerosis, PTEN/
Hamartoma syndrome, MeCP2/
Rett syndrome, E3A/
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these synaptic proteins to Rett syndrome, another single gene
disorder associated with autism, and transcriptional regula-
tion of brain derived nerve growth factor (BDNF) [141]. In
turn, TrkB mediated BDNF signals through ERK, regulates
dendritic spine formation [142], and has also been implicated
in the pathogenesis of FXS [143].

Together, these results suggest it may be useful to think
of autism as a synapsopathy [144]—a disease where
disruption of the synapse during development produces a
common clinical picture, despite a heterogeneity of
interconnected causes. It also raises the interesting possi-
bility that treatments for one cause, such as fragile X, may
have efficacy in treating other causes of autism.
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