
NE35CH20-Bear ARI 21 May 2012 8:41

The Pathophysiology of
Fragile X (and What It
Teaches Us about Synapses)
Asha L. Bhakar,1 Gül Dölen,2 and Mark F. Bear1
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Abstract

Fragile X is the most common known inherited cause of intellectual dis-
ability and autism, and it typically results from transcriptional silencing
of FMR1 and loss of the encoded protein, FMRP (fragile X mental re-
tardation protein). FMRP is an mRNA-binding protein that functions
at many synapses to inhibit local translation stimulated by metabotropic
glutamate receptors (mGluRs) 1 and 5. Recent studies on the biology
of FMRP and the signaling pathways downstream of mGluR1/5 have
yielded deeper insight into how synaptic protein synthesis and plastic-
ity are regulated by experience. This new knowledge has also suggested
ways that altered signaling and synaptic function can be corrected in
fragile X, and human clinical trials based on this information are under
way.
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FX: fragile X

Synaptic plasticity:
the ability of synapses
to change in strength
in response to activity;
an important cellular
mechanism for
learning and memory
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INTRODUCTION

This year we expect to learn the outcome of
clinical trials for potentially disease-modifying
treatments of fragile X (FX). Three important
developments outside the realm of basic neuro-
science paved the way for this progress: First,
careful clinical observation defined the syn-
drome and suggested a genetic etiology (Martin
& Bell 1943); second, mutations that silenced
a single gene (FMR1) on the X chromosome
were discovered to be the major cause (Pieretti
et al. 1991, Verkerk et al. 1991); and third,
the generation and widespread dissemination of
an Fmr1-knockout (KO) mouse enabled stud-

ies of pathophysiology (Dutch-Belgian Fragile
X Consort. 1994) (Figure 1). FMR1 encodes
fragile X mental retardation protein (FMRP),
an mRNA-binding protein that is highly ex-
pressed in neurons. As with most neurobehav-
ioral disorders of genetic origin, it was assumed
that development of the brain in the absence of
this key protein irrevocably alters neuronal con-
nectivity to produce the devastating behavioral
symptoms, including intellectual disability and
autism, that are characteristic of this disease.

However, this dim view of FX has changed
dramatically in the past ten years. It is now be-
lieved that many symptoms of FX could arise
from modest changes in synaptic signaling—
changes that can be corrected with targeted
therapies such as those that are now in clin-
ical trials. The origins of this new view can
be traced to fundamental research on synaptic
plasticity (Bear et al. 2004, Huber et al. 2002).
Since this initial insight into how synaptic sig-
naling is altered in FX, the progress toward de-
veloping therapeutics for FX has been explo-
sive. It has been shown that seemingly unrelated
symptoms of the disease can be corrected by
manipulating a molecular target, mGluR5, that
is amenable to drug therapy (Dolen et al. 2007).
Furthermore, studies in multiple animal models
of FX have shown that this core pathophysiol-
ogy is evolutionarily conserved. This extraordi-
nary progress has been the subject of a number
of recent reviews (see e.g., Dolen et al. 2010,
Krueger & Bear 2011, Levenga et al. 2010, San-
toro et al. 2011).

Certainly research on synaptic plasticity has
informed the understanding of FX pathophys-
iology; but it is also true that the biology of
FX has informed the understanding of synaptic
function and plasticity. This is the point of view
we take in the present review.

OVERVIEW OF FRAGILE X

In the majority of FX patients, a trinucleotide
(CGG) repeat expansion leads to hypermethy-
lation and transcriptional silencing of the FMR1
gene and subsequent loss of FMRP (Fu et al.
1991, Pieretti et al. 1991). In one identified
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X inactivation: the
process by which one
of the two copies of
the X chromosome
present in female
mammalian cells is
transcriptionally
silenced

patient, disease is caused by a point mutation in
FMR1 that alters protein function (De Boulle
et al. 1993). Disease severity varies with the ex-
pression level of FMRP, which can fluctuate as a
result of germline mosaicism and, in females, X
inactivation (De Boulle et al. 1993, Hatton et al.
2006, Kaufmann et al. 1999, Loesch et al. 1995,
Lugenbeel et al. 1995, Reiss & Dant 2003). Ac-
cordingly, understanding the cellular function
of FMRP has become an obvious priority.

Epidemiological studies conservatively es-
timate that FX occurs in 1:5000 males (and
approximately half as many females), making
it the leading cause of inherited intellectual
disability (Coffee et al. 2009). FX was also
the first recognized genetic disorder associ-
ated with autism, and despite expanding diag-
nostic criteria and newly discovered candidate
genes, FX remains the most common known
inherited cause of autism (Wang et al. 2010b).
In addition to moderate to severe intellectual
disability and autistic features (social/language
deficits and stereotyped/restricted behaviors),
the disease is characterized by seizures and/or
epileptiform activity, hypersensitivity to sen-
sory stimuli, attention deficit and hyperactivity,
motor incoordination, growth abnormalities,
sleep disturbances, craniofacial abnormalities,
and macroorchidism. Because FX is a mono-
genic and relatively common cause of autism,
it has been a useful model for dissecting patho-
physiology that may apply to genetically het-
erogeneous autisms.

NEW INSIGHTS INTO THE
BIOLOGY OF FMRP

Biochemical characterization of FMRP has
provided key insights into the pathophysiology
of FX, and after 20 years of research, we now
know that FMRP is an RNA-binding protein
that largely functions to negatively regulate
protein synthesis in the brain. Recent work has
led to the view that many symptoms of FX arise
from a modest increase in synaptic protein
synthesis, an aspect of cerebral metabolism
that can continue to be corrected after birth to
produce substantial benefit. Therefore, there
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Figure 1
Fulfilling the promise of molecular medicine in FX. Martin & Bell (1943)
described a group of patients characterized by a common set of features that
included intellectual disability and social withdrawal. The causative gene
mutation was discovered in 1991 (Pieretti et al. 1991, Verkerk et al. 1991). The
FMR1 gene on the X chromosome is silenced, and the protein FMRP is not
produced. Shortly thereafter, the Fmr1-KO mouse model was generated
(Dutch-Belgian Fragile X Consort. 1994) and has been intensively studied by
neurobiologists interested both in the disease and FMRP. In 2002, it was
discovered that a form of synaptic plasticity—mGluR LTD—was exaggerated
in the Fmr1 KO mouse (Huber et al. 2002). This led to the mGluR theory of
fragile X (Bear et al. 2004), which posits that many symptoms of the disease are
due to exaggerated responses to activation of mGluR5. The theory was
definitively validated in 2007 with the demonstration that multiple FX
phenotypes are corrected in the Fmr1-KO mouse by genetic reduction of
mGluR5 protein production (Dolen et al. 2007). In addition, numerous animal
studies showed that pharmacological inhibition of mGluR5 ameliorates FX
mutant phenotypes. In 2009, inhibitors of mGluR5 entered into human phase 2
trials (http://clinicaltrials.gov). If successful, these trials will represent the first
pharmacological treatment for a neurobehavioral disorder that was developed
from the bottom up: from gene discovery to pathophysiology in animals to
novel therapeutics in humans. Abbreviations: CGG, cytosine-guanine-guanine;
FMRP, fragile X mental retardation protein; FX, fragile X; mGluR5,
metabotropic glutamate receptor 5; KO, knockout; LTD, long-term synaptic
depression. Image courtesy of FRAXA Research Foundation, with permission.

is great interest in the question of how FMRP
interacts with mRNA to regulate synaptic
protein synthesis.

FMRP Binds RNA

Sequence analysis first identified three common
RNA-binding domains in the protein structure
of FMRP, providing the first suggestion
of a direct interaction between FMRP and
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R138Q I304N S500

RGGNESKH2KH1NLS

N C

Figure 2
Functional domains of FMRP. Human FMRP, a 632 amino acid polypeptide
( gray bar), has a nuclear localization signal (NLS; light blue), two K-homology
domains (KH1 and KH2; orange), an RGG (arginine-glycine-glycine) box (dark
blue), and a nuclear export sequence (NES; red ). R138Q and I304N are
naturally occurring mutations in patients with developmental delay and a
severe form of FX, respectively. I304N abolishes polyribosome association.
S500 is a major site of phosphorylation. Abbreviations: N, amino terminus;
C, carboxy terminus; FMRP, fragile x mental retardation protein.

Polyribosome: a
cluster of ribosomes all
attached to a single
mRNA molecule

RNA (Ashley et al. 1993, Siomi et al. 1993).
Two of the domains are hnRNP K-homology
(KH) domains, and the third, located close to
the C-terminal end, is an RGG box (Figure 2).
KH domains are thought to recognize and
bind “kissing-complex” tertiary motifs in RNA
(Darnell et al. 2005), whereas the RGG box
recognizes stem-G-quartet loops, possibly in
a methylation-dependent manner (Blackwell
et al. 2010). A stem loop SoSLIP motif, found
in one target (Sod1 mRNA), has also been
identified and can bind to the C-terminal RGG
region (Bechara et al. 2009). In addition, U-rich
sequences have been isolated as potential RNA-
binding motifs, although no precise binding
domains within FMRP have yet been described
(Chen et al. 2003, Fahling et al. 2009).

How FMRP associates with specific mRNAs
is still under active investigation. A point mu-
tation (I304N) within the second KH domain
leads to a severe clinical presentation of the dis-
ease and has provided the first evidence that
binding to mRNA and this domain in particular
are critical to the function of FMRP (De Boulle
et al. 1993, Feng et al. 1997a). Recent work us-
ing ultraviolet light to crosslink FMRP with en-
dogenous mRNA in situ revealed, surprisingly,
that FMRP binds largely within the coding re-
gions of many mRNAs instead of the 5′ or 3′

untranslated regions (Darnell et al. 2011). Al-
though this study did not reveal a specific con-
sensus motif, synthetic kissing-complex RNA
was still effective in competing with these tar-
get mRNAs for binding to FMRP, confirming
that KH domains and kissing-complex motifs
are critically involved. It has been estimated

that ∼4% of total brain mRNA binds FMRP
(Ashley et al. 1993, Brown et al. 2001, Darnell
et al. 2011).

FMRP May Regulate RNA Transport

FMRP also contains a nuclear localization se-
quence and a nuclear export sequence (Ash-
ley et al. 1993), and although its expression
is largely cytoplasmic (found in the cell body,
dendrites, and synapses), some FMRP can be
found shuttling in and out of the nucleus (Feng
et al. 1997b). To date, few data exist to support
a role for FMRP in regulating transcription
or RNA processing, but FMRP can be found
bound to nuclear mRNA, a nuclear exporter
protein (Tap/NXF1), and to pre-mRNA while
it is being transcribed (Kim et al. 2009). A novel
missense mutation (R138Q) was detected in the
nuclear localization sequence of FMR1 in a pa-
tient with developmental delay (Collins et al.
2010), suggesting that nuclear FMRP is impor-
tant for neuronal function.

Many in vitro studies have suggested a role
for FMRP in transporting mRNA. The pro-
tein has been imaged in dynamic RNA granules
that traffic from the soma to dendrites and ax-
ons (Antar et al. 2004, 2005, 2006; De Diego
Otero et al. 2002). RNA granules are believed
to be translationally repressed mRNP (mes-
senger ribonucleoprotein) complexes. Gran-
ules are heterogeneous in their composition:
P bodies and stress granules contain transla-
tional initiation machinery (e.g., monomeric
ribosomal constituents, mRNA, and proteins)
trapped before translational initiation, whereas
high-density granules also contain elongation
machinery (e.g., polyribosomes and ribosomal
aggregates) whose translation has been stalled
(Anderson & Kedersha 2006, Kiebler & Bassell
2006). Once localized to the synapse, mRNAs
are released from the granules and subsequently
translated in response to stimuli (Krichevsky &
Kosik 2001). FMRP mRNPs have been found
in all three types of RNA granules (Aschrafi
et al. 2005, Barbee et al. 2006, Maghsoodi et al.
2008, Mazroui et al. 2002).

In some instances, FMRP trafficking into
dendrites can be stimulated by neuronal
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Figure 3
Excessive protein synthesis in the hippocampus of Fmr1-KO mice. Translation rates in the hippocampus measured by metabolic
labeling in vitro (a,b) and in vivo (c) confirm that FMRP functions to negatively regulate protein synthesis in neurons. (a) Basal protein
synthesis is significantly increased in Fmr1-KO hippocampal slices compared to control WT. Although there is no effect of reducing
mGluR5 by 50% in Grm5 heterozygous mice (HT), crossing these mice with Fmr1-KO mice (CR) is sufficient to correct the excessive
protein synthesis (modified from Dolen et al. 2007). (b) Excessive protein synthesis in Fmr1-KO hippocampal slices is restored to
normal levels by acute treatment with an mGluR5 inhibitor (MPEP), demonstrating it occurs downstream of constitutive mGluR5
activity (modified from Osterweil et al. 2010). (c) Nissl-stained coronal sections (top panel ) and their corresponding pseudocolored
autoradiograms (middle and lower panels) show quantitative increases in translation rates throughout the hippocampus of 6-month-old
Fmr1-KO mice in vivo (lower panel ) compared with WT controls (middle panel ). Images courtesy of C.B. Smith (Qin et al. 2005). Hot
colors represent higher rates of synthesis. Abbreviations: FMRP, fragile X mental retardation protein; KO, knockout; mGluR,
metabotropic glutamate receptor; MPEP, 2-methyl-6-(phenylethynyl)-pyridine; WT, wild type.

mGluR:
metabotropic
glutamate receptor

LTD: long-term
depression

activity (Antar et al. 2004, Gabel et al. 2004).
However, it does not appear to be necessary for
the steady-state maintenance or the constitutive
localization of the majority of its target mRNAs
in dendrites (Dictenberg et al. 2008, Steward
et al. 1998). Indeed, most mRNAs that nor-
mally associate with FMRP are correctly tar-
geted to the synapse in the absence of FMRP.
Thus, another RNA-binding protein may be
needed for the normal active transport of the
majority of FMRP targets, and FMRP may be
more of a passive passenger within the RNA
transport granule.

FMRP Negatively
Regulates Translation

Subcellular fractionation studies originally
showed that the majority of FMRP-RNA com-
plexes are in actively translating polyribosomal
fractions, particularly in synaptic preparations
(Aschrafi et al. 2005; Brown et al. 2001; Corbin
et al. 1997; Eberhart et al. 1996; Feng et al.
1997a, 1997b; Khandjian et al. 1995; Stefani
et al. 2004; Tamanini et al. 1996; Zalfa et al.
2007). These observations, together with

the knowledge that both FMRP protein and
mRNA are expressed in dendrites and dendritic
spines, suggested that FMRP regulates local
protein synthesis at the synapse.

Several independent lines of evidence
support this hypothesis and show that FMRP
functions to repress translation. First, purified
recombinant FMRP added to rabbit reticu-
lolysate or injected into Xenopus oocytes shows
a dose-dependent suppression of mRNA trans-
lation that is abolished when FMRP-binding
sequences are removed from target mRNA
(Laggerbauer et al. 2001, Li et al. 2001).
Second, an electrophysiological readout of
synaptic protein synthesis in the hippocampus,
metabotropic glutamate receptor (mGluR)-
dependent long-term depression (LTD)
(discussed below), is exaggerated in the absence
of FMRP, consistent with increased protein
synthesis (Huber et al. 2002). Third, direct
measurement of the rate of protein synthesis
in hippocampal slices or cortical synaptoneu-
rosomes in vitro shows a significant elevation
in the Fmr1-KO mouse (Dolen et al. 2007,
Muddashetty et al. 2007, Osterweil et al. 2010)
(Figure 3). Finally, similar measurements

www.annualreviews.org • Synaptic Pathophysiology of Fragile X 421
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(Fragile X)FMRP
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5’ m7G

3’ UTR
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AUG UAG
OFF

ON40S

60S

Figure 4
FMRP regulates mRNA translation. FMRP (red ovals) can be found bound to
coding regions of mRNA in association with stalled ribosomes [complexes of
40S (small gray ovals) and 60S (large gray ovals) ribosomal subunits] and bound
to 3′UTRs in association with inhibitory components of the initiation
machinery (indicated by an inhibitory line). Data currently suggest that FMRP
normally represses translation by stalling the elongation of actively translating
ribosomes and by blocking the initiation of ribosome assembly. Loss of FMRP
(as in fragile X) removes both of these inhibitory associations and leads to
increased protein synthesis. Curly blue lines represent ribosomally synthesized
polypeptide chains that lengthen as translation proceeds. Small arrows indicate
active movement. Abbreviations: AUG, initiation codon; FMRP, fragile X
mental retardation protein; m7G, 7-methylguanylate cap; ON, translation on;
OFF, translation off; UAG, termination codon; 3′UTR, 3 prime-end
untranslated region.

Run-off assay: a
biochemical method
to assess translational
competence of
polyribosomes
initiated in vivo then
completed in vitro

performed in the KO mouse in vivo show a
global increase in brain protein synthesis (Qin
et al. 2005). The fact that increased protein
synthesis can be observed in the intact animal
in vivo has raised the possibility that measure-
ments of protein synthesis could serve as a
biomarker of disease (Bishu et al. 2008, Bishu
et al. 2009). Indeed, studies are currently un-
derway to test this hypothesis in human patients
with FX (http://www.clinicaltrials.gov).

Mechanisms of Translational
Regulation by FMRP

Although it is now appreciated that FMRP
functions to negatively regulate protein syn-
thesis, the mechanism by which repression
is achieved remains controversial. Given
that the majority of FMRP cosediments
with polyribosomes, FMRP was originally
suspected to repress translation by blocking
elongation (Ceman et al. 2003, Feng et al.
1997a, Khandjian et al. 1996, Stefani et al.

2004, Tamanini et al. 1996). This hypothesis
has received strong support in a recent study
in which FMRP mRNA targets were identified
following ultraviolet cross-linking (Darnell
et al. 2011). The majority (66%) of mRNA
binding was found within the coding sequence
of the 842 transcripts cross-linked to FMRP
in mouse brain polysomes. Ribosomal run-off
assays on these transcripts demonstrated that
FMRP is associated with transcripts on which
ribosomes are stalled. These data support a
model whereby FMRP dynamically represses
translation in a complex consisting of target
mRNAs and stalled ribosomes (Figure 4).

However, the presence of FMRP mRNPs
in p bodies, stress granules, and high-density
granules has suggested that FMRP represses
translation throughout many phases of transla-
tional regulation. FMRP can cosediment with
the monomeric 80S ribosomes and in light
mRNP complexes with BC1 (brain cytoplas-
mic RNA 1), CYFIP1 (cytoplasmic FMRP-
interacting protein), and translation initiation
factors (Centonze et al. 2008, Gabus et al. 2004,
Johnson et al. 2006, Lacoux et al. 2012, Lag-
gerbauer et al. 2001, Napoli et al. 2008, Zalfa
et al. 2007). These data suggest that FMRP
also represses translation at the initiation stage.
In this model, FMRP represses translation by
inhibiting cap-dependent initiation through in-
teractions with CYFIP1, a eukaryotic initiation
factor 4E binding protein (4E-BP). Consistent
with this proposal, genetic reduction of CY-
FIP1 levels increases the expression of several
FMRP targets (Napoli et al. 2008). The in vivo
relevance of these interactions, however, has
been questioned (Iacoangeli et al. 2008a,2008b;
Stefani et al. 2004; Wang et al. 2005).

Mechanisms to Stall Elongation

How FMRP cooperates with the transla-
tional machinery to stall elongation or block
initiation is incompletely understood. Some
data have suggested that association with
the microRNA (miRNA) machinery may
be involved. FMRP interacts with mem-
bers of the RNA-induced silencing complex

422 Bhakar · Dölen · Bear
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microRNA (miRNA):
a short RNA molecule
∼22 nucleotides long
that binds to
complementary
sequences on target
mRNAs, usually
resulting in
translational
repression or target
degradation

Glutamate: the
major excitatory
neurotransmitter in
the nervous system

N-methyl-D-
aspartate ionotropic
glutamate receptor
(NMDAR): well
known for triggering
synaptic plasticity at
the synapse

(Bolduc et al. 2008, Caudy & Hannon 2004,
Caudy et al. 2002, Cheever & Ceman 2009,
Ishizuka et al. 2002, Jin et al. 2004, Muddashetty
et al. 2011; but see Didiot et al. 2009) and
several specific miRNAs (Edbauer et al. 2010,
Plante et al. 2006, Xu et al. 2008, Yang et al.
2009) that function together to silence target
mRNA, either by direct cleavage of transcripts
or by translational repression (see, for a review,
Schratt 2009). Because FMRP lacks a canonical
miRNA-binding domain, it currently seems
likely that this modulation occurs through
protein-protein interactions between members
of the RNA-induced silencing complex (e.g.,
Argonaute, Dicer) and FMRP, rather than
direct binding to miRNAs. Still, the possibility
remains that the kissing-complex structure, the
putative ligand of the KH domain of FMRP,
may be formed by miRNA and target mRNA
together (Darnell et al. 2005, Plante et al.
2006).

Several post-translational modifications of
FMRP have also been suggested to regulate
translational repression. Methylation of FMRP
on arginine residues can reduce FMRP binding
to stem loop G-quartet structures (Stetler et al.
2006). Others have suggested that ubiquitin-
proteasome degradation followed by resynthe-
sis of FMRP may be a mechanism for transient
derepression (Zhao et al. 2011), but some work
has shown that FMRP synthesis increases upon
stimulation prior to its degradation (Hou et al.
2006). FMRP can also be phosphorylated on
a series of serine residues N terminal to the
RGG box. Phosphorylation has been suggested
to stall ribosomal translocation while preserv-
ing the association of FMRP with mRNA
(Ceman et al. 2003, Coffee et al. 2011, Mud-
dashetty et al. 2011). Thus, one way neural
activity may gate translation is by regulating
FMRP phosphorylation.

SYNAPTIC REGULATION
OF PROTEIN SYNTHESIS

Although FMRP is expressed throughout the
neuron, it has attracted particular attention as
a regulator of protein synthesis at excitatory

synapses. Because exaggerated protein synthe-
sis is believed to be pathogenic in FX and pos-
sibly in other disorders associated with autism
(Kelleher & Bear 2008, Darnell 2011), the ques-
tion of how synaptic activity can trigger FMRP-
regulated mRNA translation is of particular in-
terest. Conversely, because neuronal protein
synthesis has a fundamental role in synap-
tic plasticity and information storage (Kandel
2001), understanding how FMRP functions at
the synapse has also become a high priority in
basic neurobiology.

Interest in synaptically localized protein
synthesis originated with the discovery that
polyribosomes accumulate at the base of many
dendritic spines that are postsynaptic to gluta-
matergic excitatory synapses (Steward & Levy
1982). These synaptic polyribosomes seemed
to provide an ideal substrate for the structural
changes that support long-term synaptic
modifications, such as long-term potentia-
tion (LTP) and LTD, that store memories.
Consistent with this proposal, the transitions
from early to late phases of LTP and LTD
require new protein synthesis independent of
transcription (Cracco et al. 2005, Huber et al.
2000, Kang & Schuman 1996). Furthermore,
these modifications can be maintained by new
translation in isolated dendrites, implicating
pre-existing dendritically localized mRNA.
Thus, glutamate release at individual synapses
appears to stimulate local protein synthesis to
maintain long-lasting synaptic change.

Translational Control at
Glutamatergic Synapses

An understanding of the molecular mechanisms
by which synaptic activity regulates local pro-
tein synthesis is beginning to emerge. Two
types of postsynaptic glutamate receptors have
been implicated: the calcium-permeable N-
methyl-D-aspartate ionotropic receptors (NM-
DARs) and the Gq-coupled (group 1) mGluR1
and mGluR5. The mGluRs have complemen-
tary expression patterns: mGluR5 expression is
highest in the forebrain and mGluR1 expres-
sion is highest in the cerebellum (Shigemoto
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ERK: extracellular
signal–regulated kinase

mTOR: mammalian
target of rapamycin

et al. 1993). NMDARs are also widely expressed
throughout the brain and stimulate the release
of brain-derived neurotrophic factor, a ligand
for TrkB receptors, which can contribute to
synaptic protein synthesis (Kang & Schuman
1996, Schratt 2009).

Of particular interest in the context of FX
is protein synthesis stimulated by activation
of Gp1 mGluRs. Weiler & Greenough (1993)
provided the first evidence that Gp1 mGluR ag-
onists stimulate protein synthesis in biochemi-
cal preparations enriched for cortical synapses.
It is now understood that Gp1 mGluRs cou-
ple to the synaptic translation machinery at
synapses in many parts of the brain and that
many functional consequences of Gp1 mGluR
activation depend on new protein synthesis (see
Krueger & Bear 2011 for a review).

Two intracellular signaling cascades have
been proposed to couple mGluRs and other
synaptic receptors to the translational machin-
ery: (a) the mammalian target of rapamycin
(mTOR) pathway and (b) the extracellular
signal–regulated kinase (ERK) pathway. Both
mTOR and ERK pathways can stimulate cap-
dependent translation by regulating compo-
nents of initiation. Initiation is the step during
which the small ribosome subunit is recruited to
the 5′ end of mRNA and scans toward the start
codon to assemble into the complete ribosome
(see Gebauer & Hentze 2004 for a review).

One key regulatory step in initiation is the
recognition of the 5′ mRNA cap by eIF4E
(Supplemental Figure 1. Follow the Supple-
mental Material link from the Annual Reviews
home page at http://www.annualreviews.
org), which leads to assembly of the eIF4F com-
plex and recruitment of the small ribosomal
subunit (Richter & Sonenberg 2005). A family
of 4E-BPs inhibits this process by binding to
eIF4E. This inhibition is relieved by phospho-
rylation of 4E-BPs by both mTOR and ERK or,
in postnatal mammalian brain, by deamination
(Bidinosti et al. 2010). The mTOR pathway can
also facilitate initiation through phosphoryla-
tion of p70 ribosomal protein S6 kinases (S6Ks),
leading to ribosomal protein S6 phosphoryla-
tion and phosphorylation of eIF4B. Similarly,

the ERK pathway can facilitate initiation by
phosphorylation of S6 and eIF4B through ac-
tivation of p90 ribosomal protein S6 kinases
(RSKs); however, it can also lead to phospho-
rylation of eIF4E through activation of MNK.
Phosphorylation of eIF4B stimulates the eIF4F
complex activity by potentiating the RNA-
helicase activity of eIF4A. Phosphorylation of
eIF4E generally decreases eIF4E affinity for the
cap, however, and may function to reduce over-
all translation rates. Some researchers have hy-
pothesized that this mechanism may allow for
increases in the translation of a specific subset
of mRNAs (Costa-Mattioli et al. 2009). This
is likely to be one mechanism whereby specific
pools of mRNAs are selected for translation (a
topic we discuss below).

Another major regulatory step in initiation
is the formation of the ternary complex (eIF2,
Met-tRNA, and GTP) required to complete
the 43S ribosomal complex. Phosphorylation of
eIF2 inhibits the GDP/GTP exchange required
to reconstitute a functional ternary complex,
causing a decrease in general translation and an
impairment in some forms of late-phase LTP
and long-term memory (Costa-Mattioli et al.
2009). Curiously, however, eIF2 phosphoryla-
tion can also stimulate translation of a subset
of mRNAs that contain short upstream open
reading frames. Initiation can also be regulated
at the mRNA 3′ end by CPEB (cytoplasmic
polyadenylation element–binding protein), an
RNA-binding protein that inhibits poly(A) tail
addition and formation of the eIF4F complex.
CPEB, similar to FMRP, is commonly found
to repress the translation of dendritically trans-
ported mRNAs (Costa-Mattioli et al. 2009).
How synaptic activity couples to eIF2 phospho-
rylation or CPEB regulation has yet to be fully
explained.

Although initiation is usually the rate-
limiting step in translation, in some instances
excitatory synaptic stimulation can regulate
the elongation phase of translation. Both
mGluR5 and NMDAR, via activation of
calcium/calmodulin-dependent eEF2 ki-
nase, can increase phosphorylation of eEF2.
Phospho-eEF2 stalls general elongation but

424 Bhakar · Dölen · Bear
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allows translation of a subset of mRNAs
(Scheetz et al. 2000), including those that en-
code the proteins Arc and MAP-1B (Park et al.
2008). Arc and MAP-1B are well-characterized
targets of translation repression by FMRP. Be-
low, we return to the question of how mGluRs
couple specifically to FMRP-regulated protein
synthesis.

THE MGLUR THEORY
OF FRAGILE X

As mentioned above, it is now appreciated
that Gp1 mGluRs couple to the translational
machinery at many synapses in the brain.
The mGluR theory of FX posits that many
psychiatric and neurological aspects of FX are
due to exaggerated downstream consequences
of mGluR1/5 activation (Bear et al. 2004).
The origins of this theory have been reviewed
recently elsewhere (Krueger & Bear 2011).
Briefly, Huber et al. (2000) showed that one
protein synthesis-dependent consequence of
Gp1 mGluR activation in the CA1 region
of the hippocampus is a form of LTD, later
shown to be expressed by internalization of
AMPA-type glutamate receptors (Snyder et al.
2001). The early finding that FMRP can be
synthesized in response to mGluR activation
(Weiler et al. 1997) led to the study of LTD
in the Fmr1-KO mouse (Huber et al. 2002).
The prediction at that time was that absence
of FMRP would result in impaired LTD,
given the hypothesis that FMRP was one of
the proteins synthesized to stabilize LTD.
Instead, LTD was found to be exaggerated,
suggesting that FMRP serves as a brake on
mGluR-stimulated protein synthesis. As re-
viewed above, strong consensus now indicates
that FMRP is a translational suppressor in vivo.
The mGluR theory arose from the recognition
that exaggerated consequences of mGluR
activation at synapses throughout the nervous
system could potentially provide a thread to
connect seemingly unrelated FX phenotypes.

In the intervening decade, researchers have
accumulated evidence that strongly supports
the mGluR theory. The assumption that

FMRP regulates varied responses triggered by
mGluR-stimulated protein synthesis has been
well validated (Auerbach & Bear 2010, Chuang
et al. 2005, Dolen et al. 2007, Hou et al. 2006,
Huber et al. 2002, Koekkoek et al. 2005, Lu
et al. 2004, Muddashetty et al. 2007, Nosyreva
& Huber 2006, Park et al. 2008, Ronesi &
Huber 2008, Todd et al. 2003, Waung &
Huber 2009, Westmark & Malter 2007, Zalfa
et al. 2007, Zhang & Alger 2010, Zhao et al.
2005). Moreover, as summarized in Table 1
and reviewed in greater detail elsewhere
(Dolen et al. 2010, Krueger & Bear 2011), the
important prediction that FX phenotypes can
be corrected by reducing mGluR5 activity has
been confirmed using both pharmacological
and genetic approaches in evolutionarily dis-
tant animal models (Aschrafi et al. 2005; Bolduc
et al. 2008; Chang et al. 2008; Choi et al. 2010,
2011; Chuang et al. 2005; de Vrij et al. 2008;
Dolen et al. 2007; Hays et al. 2011; Koekkoek
et al. 2005; Levenga et al. 2011; Liu et al. 2011;
Malter et al. 2010; McBride et al. 2005; Mered-
ith et al. 2011; Min et al. 2009; Nakamoto et al.
2007; Osterweil et al. 2010; Pan & Broadie
2007; Pan et al. 2008; Repicky & Broadie 2009;
Su et al. 2011; Suvrathan et al. 2010; Tauber
et al. 2011; Thomas et al. 2011, 2012; Tucker
et al. 2006; Veloz et al. 2012; Yan et al. 2005).
A way of conceptualizing the constellation of
findings is that FX is a disorder of excess—an
excess that develops as Gp1 mGluR-dependent
signaling cascades operate unchecked and that
can be corrected by intervening at the first step
in the cascade, the mGluR. The evolutionarily
conserved relationship of Gp1 mGluRs and
FMRP has provided a strong rationale for stud-
ies in human FX (see review by Hagerman et al.
2012).

However, given when and where FMRP
is normally expressed during development,
it is clear that FX is a result of more than
just altered mGluR signaling. Furthermore,
because FMRP regulates signaling initiated
by other neuronal receptors (Lee et al. 2011,
Volk et al. 2007), reduction of Gp1 mGluR
signaling seems unlikely to have a therapeu-
tic benefit across all cognitive and somatic
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Table 1 Phenotypes corrected by mGluR1/5 inhibition in animal models of FX∗

Animal model Fragile X phenotype (versus WT) mGluR1/5 manipulation Reference(s)
Mouse Exaggerated mGluR-LTD Grm5+/− cross Dolen et al. 2007

Lithium Choi et al. 2011
Mouse Increased AMPA receptor

internalization
MPEP Nakamoto et al. 2007

Mouse Impaired spontaneous EPSCs in
juvenile hippocampus

MPEP Meredith et al. 2011

Mouse Increased protein synthesis Grm5+/− cross Dolen et al. 2007
MPEP (mGluR5 NAM) Osterweil et al. 2010
Lithium Liu et al. 2011

Mouse Decreased number of mRNA
granules in whole brain

MPEP Aschrafi et al. 2005

Mouse Increased glycogen synthase
kinase-3 activity

MPEP, Lithium Min et al. 2009
Gross et al. 2010

Mouse Increased beta amyloid MPEP Malter et al. 2010
Mouse Increased dendritic spine/filopodia

density
Grm5+/− cross
Fenobam (mGluR5 NAM)
MPEP
AFQ056 (mGluR5 NAM)

Dolen et al. 2007
de Vrij et al. 2008
Su et al. 2011
Levenga et al. 2011

Mouse Altered visual cortical plasticity Grm5+/− cross Dolen et al. 2007
Mouse Exaggerated inhibitory avoidance

extinction
Grm5+/− cross Dolen et al. 2007

Mouse Impaired eyelid conditioning MPEP Koekkoek et al. 2005
Mouse Decreased initial performance on

rotorod
MPEP Thomas et al. 2012

Mouse Associative motor-learning deficit Fenobam Veloz et al. 2012
Mouse Increased audiogenic seizure Grm5+/− cross Dolen et al. 2007

MPEP Thomas et al. 2012, Yan et al. 2005
Lithium Min et al. 2009
JNJ16259685 (mGluR1 NAM) Thomas et al. 2012

Mouse Prolonged epileptiform discharges
in hippocampus

MPEP Chuang et al. 2005

Mouse Increased persistent activity states in
neocortex

MPEP, Grm5+/− cross Hays et al. 2011

Mouse Increased open-field activity MPEP Min et al. 2009, Yan et al. 2005
Lithium Thomas et al. 2011
Grm1 +/− cross

Mouse Defective prepulse inhibition of
acoustic startle

MPEP
AFQ056

de Vrij et al. 2008
Levenga et al. 2011

Mouse Abnormal social interaction with
unfamiliar mouse

Grm5+/− cross Thomas et al. 2011

Mouse Increased marble burying (repetitive
behavior)

JNJ16259685, MPEP Thomas et al. 2012

Mouse Impaired presynaptic function in
amygdala

MPEP Suvrathan et al. 2010

(Continued )
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Table 1 (Continued )

Animal model Fragile X phenotype (versus WT) mGluR1/5 manipulation Reference(s)
Mouse Avoidance behavior deficit Fenobam Veloz et al. 2012
Mouse Pubertal increase in body weight Grm5+/− cross Dolen et al. 2007
Zebrafish Abnormal axon branching MPEP Tucker et al. 2006
Zebrafish Craniofacial abnormalities MPEP Tucker et al. 2006
Zebrafish Reduced number of trigeminal

neurons
MPEP Tucker et al. 2006

Fly Increased synaptic transmission dmGluR-A null cross Repicky & Broadie 2009
Fly Increased NMJ axon arborization dmGluR-A null cross, MPEP Pan et al. 2008
Fly Increased NMJ presynaptic vesicle

density
dmGluR-A null cross Pan et al. 2008

Fly Mushroom-body structural
abnormalities

MPEP, lithium McBride et al. 2005, Pan et al. 2008

Fly Age-dependent cognitive decline MPEP, lithium Choi et al. 2010
Fly Altered regulation of ionotropic

glutamate receptor subtypes
dmGluR-A null cross Pan & Broadie 2007

Fly Decreased courtship/social learning MPEP, lithium McBride et al. 2005, Tauber et al. 2011
Fly Decreased olfactory memory MPEP Bolduc et al. 2008
Fly Increased embryonic lethality on

glutamate enriched diet
MPEP Chang et al. 2008

Fly Increased roll-over (righting) time dmGluR-A null cross Pan et al. 2008

∗Abbreviations: AMPA, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid; EPSC, excitatory postsynaptic currents; FX, fragile X; dmGluR,
drosophila mGluR; LTD, long-term depression; mGluR, metabotropic glutamate receptor; MPEP, 2-methyl-6-(phenylethynyl)-pyridine; mRNA,
messenger RNA; NAM, negative allosteric modulator; NMJ, neuromuscular junction; WT, wild type.

domains of what is a complex and pervasive
neurodevelopmental disorder. Accordingly,
efforts are under way to identify the aspects of
FX pathophysiology that may not be related to
mGluR function or that may arise before birth
(Desai et al. 2006; Dolen et al. 2007; Suvrathan
et al. 2010; Tauber et al. 2011; Thomas et al.
2011, 2012). Such knowledge is important in
guiding therapy, both by defining the limits of
what to expect from mGluR-based approaches
and by suggesting additional therapeutic
targets (see Fragile X Mental Retardation
Protein and Neurogenesis, sidebar below).

HOW MGLUR5 COUPLES TO
FMRP-REGULATED PROTEIN
SYNTHESIS

Although the mGluR theory of FX has been
well validated, it remains poorly understood

how mGluR5 couples to protein synthesis and
how this process is altered in the absence of
FMRP to disrupt synaptic function. In addi-
tion to providing additional insight into FX
pathophysiology and suggesting new therapeu-
tic targets, investigating this question promises
to shed light on long-standing but unresolved
questions concerning how protein synthesis sta-
bilizes LTD, LTP, and memory.

mGluR5 Signaling Pathways

Gp1 mGluRs were originally discovered on the
basis of their ability to stimulate phospholipase
C, the hydrolysis of phosphoinositides (PI), and
the release of calcium from intracellular stores
(Dudek et al. 1989, Nicoletti et al. 1988, Pin
et al. 1992, Schoepp & Conn 1993). One phos-
phoinositide product, DAG (diacyl-glycerol),
subsequently activates protein kinase C and
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FRAGILE X MENTAL RETARDATION
PROTEIN AND NEUROGENESIS

The metabotropic glutamate receptor (mGluR) theory has con-
tributed to a paradigm shift in the way fragile X (FX) and other
genetic disorders of brain development are viewed medically. The
data now indicate that a constellation of seemingly unrelated and
complex symptoms could be a consequence of altered cerebral
metabolism—synaptic protein synthesis in the case of FX—that
can be substantially improved by therapies begun after symptom
onset, possibly even in adulthood. It is important to recognize,
however, that FMR1 is normally expressed early in embryogene-
sis (Devys et al. 1993, Hinds et al. 1993) and that full-mutation FX
patients fail to express FMRP very early in gestation (Willemsen
et al. 1996). FMRP is required for proper prenatal neurogene-
sis and neuronal differentiation (Callan et al. 2010, Castren et al.
2005, Eadie et al. 2009, Tervonen et al. 2009). Thus, the FX brain
is different at birth.

However, neurogenesis occurs throughout life in the dentate
gyrus of the hippocampus. Remarkably, hippocampus-dependent
memory impairments have been rescued by re-expression of
FMRP in adult neural stem cells in an Fmr1 knockout (KO)
mouse line (Guo et al. 2011). Moreover, these defects can be
reversed in adults by treatment with an inhibitor of glycogen
synthase kinase 3 (GSK3) (Guo et al. 2012). GSK3 activity is el-
evated in the Fmr1 KO downstream of mGluR5 (Yuskaitis et al.
2009), suggesting that the mGluR theory may also be relevant to
this aspect of FX pathophysiology.

protein kinase D (Krueger et al. 2010). This
canonical signaling cascade does not appear
to be critically involved in FMRP-regulated
protein synthesis, however, as mGluR-LTD
is insensitive to Ca2+ chelators and inhibitors
of phospholipase C (Fitzjohn et al. 2001,
Gallagher et al. 2004, Huber et al. 2001).
Rather, signaling via the mTOR and ERK path-
ways is crucial for LTD and mGluR coupling
to protein synthesis (Figure 5).

To activate the mTOR pathway, mGluR5
couples to Homer, a postsynaptic-density scaf-
folding protein that recruits the GTPase,
PIKE-L, forming an mGluR-Homer-PIKE
complex (Ahn & Ye 2005). PIKE directly en-
hances the lipid kinase activity of PI3K (phos-
phoinositide 3-kinase), leading to the phos-

phorylation of PIP2 (phosphatidylinositol-
4,5-bisphosphate). PIP3 together with PDK
(phosphoinositide-dependent kinase) activates
the serine/threonine kinase Akt. Akt, in turn,
can activate mTOR by direct phosphorylation
and indirectly through inhibition of the tumor-
suppressor complex, composed of TSC1 and
TSC2 (for review see Han & Sahin 2011).
The TSC1/2 complex has GAP activity against
the small GTP-binding protein RHEB. When
free of TSC1/2, RHEB activates mTOR within
a rapamycin-sensitive protein complex called
mTORC1. Activation of mTORC1 is best
known for stimulating cap-dependent transla-
tion through its main effector proteins, namely
the 4E-BPs and S6Ks (see above section).

The ERK cascade, as with all mitogen-
activated protein kinase (MAPK) cascades, typ-
ically involves sequential activation of a small
GTPase (Ras), a MAPK kinase kinase (Raf ),
and a MAPK kinase (MEK), to activate ERK.
How mGluR5 couples to Ras or other down-
stream components of the ERK cascade is not
fully understood. ERK activation is required for
both mGluR LTD (Gallagher et al. 2004) and
mGluR5 activation of FMRP-regulated mRNA
translation (Osterweil et al. 2010).

Recent work on related G-protein-coupled
receptors (GPCRs) suggest that mGluR5 may
couple to the ERK cascade through β-arrestins.
β-arrestins are scaffold proteins that are typ-
ically recruited to the receptor tails following
serine/threonine phosphorylation by GPCR ki-
nases (GRKs)—a response that is best under-
stood for terminating the receptor’s G-protein
signaling (Ferguson 2001, Premont et al. 1995).
However, more recent work has shown that β-
arrestin binding to GPCRs may also serve to
regulate mRNA translation by providing a scaf-
fold for Raf, MEK, ERK, and MNK (DeWire
et al. 2008).

Interestingly, FMRP appears to be a com-
ponent of the signaling pathway that cou-
ples mGluR5 activation to protein synthesis.
As mentioned above, dephosphorylation shifts
FMRP from stalled to active polyribosomes
(Ceman et al. 2003, Muddashetty et al. 2011),
motivating a few groups to identify FMRP
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Figure 5
mGluR1/5 signaling pathways relevant to protein synthesis. Glutamate binding to Gp1 mGluRs activates
three main pathways that couple the receptors to translational regulation: (a) the PLC/calcium-calmodulin
pathway (orange ovals), (b) the mTOR pathway (blue ovals), and (c) the ERK pathway ( green ovals). See main
text for details. Key translational regulatory components implicated in these pathways are shown in brown.
mGluR1/5 may also inhibit FMRP (red oval ) function to regulate translation through a fourth pathway
requiring stimulation of PP2A ( yellow oval ). Question marks indicate undetermined associations. Arrows
indicate a positive consequence on downstream components; perpendicular lines indicate an inhibitory
consequence. Abbreviations: [Ca2+]i, calcium release from intracellular stores; CaM, calmodulin; ERK,
extracellular signal–regulated kinase; FMRP, fragile X mental retardation protein; (Gαq, Gβ, Gγ),
heterotrimeric G proteins; InsP3, inositol-1,4,5-triphosphate (InsP3); mGluR, metabotropic glutamate
receptor; mTOR, mammalian target of rapamycin; PtdIns, phosphoinositides; PLC, phospholipase C;
PP2A, protein phosphatase 2A; Raptor, regulatory-associated protein of mTOR.

phosphatases and kinases that lie downstream
of mGluR5. S6K1 can phosphorylate FMRP on
a conserved serine residue required for mRNA
binding and PP2A can remove this phosphory-
lation (Mao et al. 2005, Narayanan et al. 2007,
Narayanan et al. 2008, Wang et al. 2010a).
Both enzymes are activated in response to
mGluR5 stimulation, and one model proposes
that activation of PP2A rapidly dephospho-
rylates FMRP to enable translation, followed
by delayed translation suppression caused by
S6K phosphorylation of FMRP downstream of
mTOR (Santoro et al. 2011).

Regulation of mGluR5-dependent protein
synthesis exclusively via FMRP is unlikely,
however. In the Fmr1-KO mouse, which lacks
FMRP, the excessive basal protein synthesis
(and many other phenotypes) are rescued
by inhibiting mGluR5 (Figure 3). If loss of
FMRP completely uncoupled mGluR5 from
protein synthesis regulation, there would be
no effect of inhibiting mGluR5 on protein
synthesis in the Fmr1 KO. Therefore, mGluR5
stimulation of protein synthesis must occur via
additional pathway(s) that are independent of
FMRP (Figure 6).
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ON

OFF
Translation

Translation

FMRP

mGluR5

a b

cd

Figure 6
Schema for coupling mGluR5 to FMRP-regulated
protein synthesis. Several lines of evidence suggest
that mGluR5 couples to FMRP-regulated protein
synthesis through multiple pathways. (a) Activation
of mGluR5 directly stimulates mRNA translation
through the ERK signaling pathway.
(b) Additionally, activation of mGluR5 can trigger
dephosphorylation of FMRP by PP2A, which
derepresses translation. (c) FMRP is rapidly
synthesized in response to mGluR5 activation,
providing a negative-feedback loop to turn off
protein synthesis. (d ) Several FMRP target proteins
are known components of mGluR5 signaling
pathways, suggesting that positive feedback may
occur, particularly in the context of FX.
Abbreviations: ERK, extracellular signal–regulated
kinase; FMRP, fragile X mental retardation protein;
FX, fragile X; mGluR, metabotropic glutamate
receptor; PP2A, protein phosphatase 2A.

TSC: tuberous
sclerosis complex

Altered Signaling in the
Absence of FMRP

Because both ERK and mTOR pathways can
be activated by mGluR5 (Antion et al. 2008,
Banko et al. 2006, Ferraguti et al. 1999,
Gallagher et al. 2004, Hou et al. 2006, Ronesi
& Huber 2008, Sharma et al. 2010) and both
regulate protein synthesis, these two pathways
have been most studied in the context of FX.
One hypothesis has been that alterations in
mGluR5 signaling through ERK or mTOR
may be responsible for the excessive protein
synthesis and exaggerated LTD in the Fmr1-
KO mice. Consistent with the notion of altered
signaling, mGluR5 receptors are less tightly as-
sociated with synaptic plasma membrane and
Homer (Giuffrida et al. 2005), and they are un-
able to activate the mTOR pathway in Fmr1-
KO mice (Ronesi & Huber 2008). Other re-
ports suggest a basal increase in ERK activity

(Hou et al. 2006), an aberrant mGluR-induced
inactivation of ERK (Kim et al. 2008), and a
basal increase in AKT/mTOR signaling that
occludes further activation by mGluR stimu-
lation (Gross et al. 2010, Sharma et al. 2010).

Although mGluR5 signaling is evidently
altered in FX, it has not been shown that these
alterations are responsible for the excessive
protein synthesis that is believed to be the
core pathogenic mechanism in FX. Indeed,
one recent study examined ERK and mTOR
pathways under the same experimental condi-
tions that reveal excessive protein synthesis and
exaggerated LTD and found no evidence for al-
tered signaling (Osterweil et al. 2010). Protein
synthesis rates could be restored to WT levels
by acute partial inhibition of mGluR5 or ERK
activity (but not mTOR), however, indicating
that increased protein synthesis in FX occurs
downstream of constitutive mGluR5/ERK
activity (Osterweil et al. 2010). These data sug-
gest that the excessive basal protein synthesis
in Fmr1-KO mice is due to hypersensitivity of
the translation machinery to normal mGluR
signals (ERK, in particular), rather than to
hyperactivity of the mGluR signaling pathways
(Figure 6). If this model is correct, altered
intracellular signaling in FX should be viewed
as a consequence, rather than a cause, of the
increased protein synthesis in this disease.

ERK and mTOR May Regulate
Separate Pools of mRNA

Disentangling the contributions of ERK and
mTOR signaling pathways to the protein
synthesis required for mGluR-LTD has been
difficult, but recent studies of a mouse model
of tuberous sclerosis complex (TSC) have
been illuminating. TSC is another single-gene
disorder characterized by intellectual disability,
seizures, and autism and is caused by heterozy-
gous loss of function of either the TSC1 or
TSC2 gene. The protein products of these
genes form the TSC1/2 complex that normally
represses mTOR signaling via inhibition of
RHEB, as discussed above. Thus, TSC is
caused by excessive mTOR signaling. If the
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Allosteric modulator:
a drug that modulates
the function of a
receptor by binding to
a site that is different
from the orthosteric
ligand binding site

excessive protein synthesis in FX were driven
by the mTOR signaling pathway, one would
expect TSC mutations to have similar effects on
mGluR-dependent LTD. Very recently, three
groups examined this hypothesis in the CA1
region of hippocampus using different but com-
plementary animal models of TSC (Auerbach
et al. 2011, Bateup et al. 2011, Chevere-Torres
et al. 2012). The surprising result is that mouse
Tsc mutants with excessive mTOR activity
show impaired mGluR-LTD and basal protein
synthesis, the exact opposite of what is observed
in the Fmr1-KO. Moreover, synaptic, bio-
chemical, and cognitive deficits in the Tsc2+/−

mouse model were corrected by treatment with
a positive allosteric modulator of mGluR5 as
well as by introducing the FX mutation into the
Tsc2+/− animals (Auerbach et al. 2011). These
findings indicate that elevated mTOR signaling
is not a proximal cause of FX pathophysiology.

The recent findings in Tsc mutants suggest
that excessive mTOR signaling suppresses
the synthesis of proteins required for LTD
(Auerbach et al. 2011). One simple hypothesis
is that elevated mTOR causes hyperphos-
phorylation of FMRP via activation of S6K1
(Figure 5), resulting in translational suppres-
sion of the FMRP-target mRNAs that gate
LTD. However, this explanation is not easily
reconciled with the observation that excess
LTD in the Fmr1-KO mice (lacking FMRP)
is rescued by crossing them with the Tsc2+/−

mice. An alternative model is that mTOR
stimulates translation of a pool of mRNA (call
it Pool II) that competes with a second, ERK-
and FMRP-regulated pool (Pool I) for access
to the translation machinery (Figure 7) (see
also Bear et al. 2004).

As mentioned above, there is considerable
precedent for a “push-pull” regulation of trans-
lation by different pools of mRNA. Inhibition
of what is often called general translation en-
ables certain types of specific translation of mR-
NAs that can include FMRP targets. Although
this can occur via multiple mechanisms, to il-
lustrate consider regulation of translation via
the elongation factor eEF2. Phosphorylation
of eEF2 by eEF2 kinase occurs in response

mTORERK1/2

Translation

TSC1/2

Translation

LTD proteins LTP proteins (?)

Pool I Pool II

mGluR5

FMRP

Figure 7
The two-pool hypothesis. A model to account for the opposing mGluR5
responses detected in the Tsc2+/− and Fmr1-KO mice proposes that activation
of mGluR5 stimulates the translation of a pool of mRNAs (Pool I), through
ERK- and FMRP-dependent pathways, that are in competition for the
translational machinery with a second pool of mRNAs (Pool II) that are
regulated by mTOR activation. Current data suggest that mRNAs translated in
Pool I may comprise the proteins required to stabilize LTD (LTD proteins),
whereas mRNAs within Pool II stabilize LTP (LTP proteins). Consistent with
this proposal, derepression of Pool I in FX causes excessive LTD, whereas
derepression of Pool II in TSC causes enhanced LTP. Arrows indicate a
positive consequence on downstream components; perpendicular lines indicate
an inhibitory consequence. Abbreviations: ERK, extracellular signal–regulated
kinase; FMRP, fragile X mental retardation protein; FX, fragile X; KO,
knockout; LTD, long-term synaptic depression; LTP, long-term synaptic
potentiation; mGluR, metabotropic glutamate receptor; mTOR, mammalian
target of rapamycin; TSC, tuberous sclerosis complex.

to mGluR5 activation and promotes transla-
tion of specific transcripts in Pool I (including
those for the FMRP targets Arc and MAP1b)
by inhibiting translation of Pool II transcripts
(Park et al. 2008). Conversely, activation of the
mTOR pathway causes inhibitory phosphory-
lation of the eEF2 kinase (via S6 kinase), which
stimulates translation of Pool II and thereby in-
hibits translation of Pool I (Costa-Mattioli et al.
2009, Herbert & Proud 2007).

Two distinct effects on protein synthesis–
dependent synaptic plasticity have been re-
ported in Tsc2 mutants with increased mTOR
activity: (a) The persistence of late-phase LTP
is increased, presumably by increasing transla-
tion of the proteins required to make synapses
stronger (Ehninger et al. 2008), and (b) mGluR-
LTD is inhibited by eliminating the protein
synthesis required to make synapses weaker
(Auerbach et al. 2011, Bateup et al. 2011). It is
tempting to speculate that Pool II includes LTP
proteins regulated by mTOR signaling and that
Pool I comprises LTD proteins regulated by
mGluR5, ERK, and FMRP. According to this

www.annualreviews.org • Synaptic Pathophysiology of Fragile X 431

A
nn

u.
 R

ev
. N

eu
ro

sc
i. 

20
12

.3
5:

41
7-

44
3.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
by

 S
ta

nf
or

d 
U

ni
ve

rs
ity

 -
 M

ai
n 

C
am

pu
s 

- 
L

an
e 

M
ed

ic
al

 L
ib

ra
ry

 o
n 

03
/0

5/
13

. F
or

 p
er

so
na

l u
se

 o
nl

y.



NE35CH20-Bear ARI 21 May 2012 8:41

idea, derepression of Pool I in FX causes exces-
sive LTD, whereas derepression of Pool II in
TSC causes enhanced LTP.

Such simple models are useful if they gen-
erate hypotheses and stimulate experiments. If
this conjecture is correct, for example, pro-
teomic comparison of Tsc2+/− and Fmr1-KO
hippocampus may be a fruitful path to discover
the elusive plasticity gating proteins. Of course,
the regulation of plasticity-related protein syn-
thesis is unlikely to be this simple. For example,
the model suggests that LTP may be impaired
in FX owing to repression of Pool II transla-
tion. Although there are some reports of de-
ficient LTP in the hippocampus of Fmr1-KO
mice (Hu et al. 2008, Lauterborn et al. 2007,
Lee et al. 2011, Meredith & Mansvelder 2010,
Shang et al. 2009), many have found no dif-
ference in LTP threshold or long-term main-
tenance (Auerbach & Bear 2010, Godfraind
et al. 1996, Zhang et al. 2009). Another ele-
ment of the model that requires further clari-
fication is how activity couples to the mTOR
pathway. A recent study showed that inhibition
of the mTOR pathway derepresses translation
of the Pool I mRNA Kv4.2, but that this occurs
via dephosphorylation of FMRP downstream
of NMDA receptors instead of mGluRs (Lee
et al. 2011). Other studies have shown mTOR
is activated by Gp1 mGluR activation and is re-
quired for LTD (Hou & Klann 2004; but see
Auerbach et al. 2011). One thing is certain: In-
tracellular signaling is complicated. Clarity will
require that experiments be performed on the
same synapses, prepared in the same way, and
from animals that are at the same age.

These caveats notwithstanding, under
identical experimental conditions, littermate
mice carrying the Fmr1 mutation, the Tsc2 mu-
tation, and both mutations show augmented,
impaired, and WT levels, respectively, of
mGluR-dependent LTD and protein synthesis
(Auerbach et al. 2011). Of particular interest,
both single mutants showed deficits in context-
discrimination memory that were erased in the
double mutants. These findings support the
ideas that proper synaptic function requires
an optimal level of mGluR-regulated protein

Synaptic protein synthesis

WT

FXSTSC

mGluR5 NAMmGluR5 PAM

S
y

n
a

p
ti

c 
fu

n
ct

io
n

Figure 8
Mutations causing monogenic autism define an axis
of synaptic pathophysiology. Recent data suggest
that proper synaptic function requires an optimal
level of mGluR-regulated protein synthesis and that
deviations in either direction can produce similar
impairments in cognitive function (Auerbach et al.
2011). Two types of monogenic autism, TSC and
FXS, lie on opposite ends of this spectrum and,
correspondingly, show reduced and increased
protein synthesis rates, and respond to opposite
alterations in mGluR5 activation (PAM and NAM,
respectively). Abbreviations: FXS, fragile X
syndrome; mGluR, metabotropic glutamate
receptor; NAM, negative allosteric modulator;
PAM, positive allosteric modulator; TSC, tuberous
sclerosis complex; WT, wild type.

synthesis and that deviations in either direction
can yield similar behavioral disturbances that
can include cognitive impairment (Figure 8).

PATHOGENIC PROTEINS

Evidence suggests that synaptically controlled
protein synthesis must be maintained in a nor-
mal range to ensure proper synaptic (and cog-
nitive) function, and that important aspects of
FX are a consequence of altered protein ex-
pression. Several-hundred mRNAs have been
implicated as targets of FMRP (Darnell et al.
2011). Among these are the proteins that dis-
rupt synaptic function in FX, and it is of great
interest to identify those that are pathogenic.

Given the reversal of FX phenotypes by
reducing mGluR1/5 stimulation, one way to
prioritize the list of pathogenic proteins may
be to determine which of the identified direct
targets show (a) altered protein expression
profiles in the Fmr1-KO mice, (b) translation
under normal circumstances in response to
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mGluR1/5 activation, and (c) a contribution to
the functional responses to activated mGluR5,
e.g., mGluR LTD. For example, the plasticity
protein Arc is an identified FMRP mRNA
target, upregulated in the Fmr1-KO mouse
and synthesized at the synapse in response
to mGluR5 activation (Auerbach et al. 2011,
Park et al. 2008, Waung et al. 2008). Similarly,
the amyloid precursor protein (APP) and the
brain-specific tyrosine phosphatase STEP
are FMRP mRNA targets, synthesized in
response to mGluR5 (Westmark & Malter
2007, Westmark et al. 2009, Zhang et al. 2008),
and both APP cleavage products and STEP
protein are overexpressed in the Fmr1-KO
mouse (Goebel-Goody et al. 2011). Arc and
STEP are both considered to be LTD pro-
teins, involved in regulating AMPA-receptor
membrane trafficking. The cleavage product of
APP, β-amyloid, also triggers AMPA receptor
internalization and LTD (Hsieh et al. 2006).
Of particular interest, removing a single allele
of APP in the Fmr1 KO partially or completely
corrects audiogenic seizure, anxiety, and
mGluR LTD phenotypes (Westmark et al.
2011). Another FMRP target of interest is met-
alloproteinase 9 (MMP-9), also overexpressed
in the Fmr1-KO downstream of mGluR5.
MMP-9 is a secreted extracellular endopep-
tidase that, similar to Gp1 mGluR agonists
(Vanderklish & Edelman 2002), elongates and
thins dendritic spines (Michaluk et al. 2011).
Treatment with the tetracycline analogue
minocycline (among other actions) inhibits
MMP-9 and corrects the spine phenotype in
the Fmr1-KO mouse (Bilousova et al. 2009).
Moreover, both minocycline and genetic
reduction of MMP rescue circuit disruptions in
the dfmr1-null fly model of FX (Siller & Broadie
2011).

Additional downstream consequences of al-
tered synaptic protein expression may be dys-
regulation of the signaling components that
normally control protein synthesis. For ex-
ample, both the catalytic subunit of PI3K
(p110b) and the PI3K enhancer PIKE-L are
FMRP mRNA targets, translated in response to
mGluR activation and elevated in the Fmr1-KO

mice (Gross et al. 2010, Sharma et al. 2010). In-
deed, 62% of the genes composing the mGluR5
postsynaptic proteome (Croning et al. 2009)
are direct FMRP targets (Darnell et al. 2011).
These findings fit with data showing abnormal
mGluR5 signaling in FX.

The list of pathogenic proteins is sure to
expand as additional research is conducted.
Particularly interesting are those that can be
targeted with small-molecule therapeutics. In
addition to those mentioned above, inter-
esting prospects include p21-activated kinase
(Hayashi et al. 2007) and glycogen synthase
kinase-3 (Mines & Jope 2011).

The overlap of FMRP targets and genes im-
plicated in autism is intriguing. One-quarter
of the SFARI database of autism risk genes
(http://gene.sfari.org) are FMRP targets.
Among these are NLGN3, NRXN1, SHANK3,
PTEN, TSC2, and NF1, all of which encode
proteins that control synaptic structure or pro-
tein synthesis. Rare mutations of these genes all
cause autism (Zoghbi & Bear 2012). These find-
ings reinforce the belief that the study of FX, the
most common known genetic cause of autism,
provides insight into the molecular pathophys-
iology of autism and associated intellectual dis-
ability of unknown etiology. The hope is that
treatments developed for FX will be useful for
treating autism of diverging etiologies, with the
important caveat that it will be critical to under-
stand where an individual is on the spectrum of
altered synaptic protein synthesis to devise an
appropriate therapy (Auerbach et al. 2011).

CONCLUDING REMARKS

Interest in FX has burgeoned in recent years. It
is now appreciated to be a disease of the synapse,
amenable to potentially disease-altering ther-
apeutic interventions and relevant to under-
standing the pathophysiology of autism and
intellectual disability more broadly. We appear
to be close to fulfilling the promise of molecular
medicine in FX (Krueger & Bear 2011). We
have gone from identification of the gene to the
discovery and validation of novel therapeutic
targets, and there is good reason for optimism
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that new therapies will emerge that can
greatly enhance the quality of life for affected
individuals and their families (see Figure 1).

This field has grown so large that it is impos-
sible to cover adequately all the developments
given the space limitations of this review. We
have chosen to focus on synaptic control of pro-
tein synthesis because it appears to be proximal
to the biology of FMRP and the pathogenesis
of the disease in multiple animal models. In
addition to targeting synaptic protein synthe-
sis, other approaches also show promise, for

example, changing the balance of excitation
to inhibition by enhancing GABA signaling
(Hampson et al. 2011, Rooms & Kooy 2011).
Whether different approaches will converge
on the same pathophysiological processes or
whether they will target distinct aspects of the
disease remains to be determined. Regardless,
understanding how synaptic transmission
differs in FX holds the key to developing new
therapies. Furthermore, the study of FX has
greatly enriched our understanding of the
neurobiology of synaptic transmission.
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