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ARTICLE INFO ABSTRACT

Keywords: Fragile X is the leading inherited cause of mental retardation and autism. Recent advances in our mechanistic
Fragile X ) understanding of the disease have led to the identification of the metabotropic glutamate receptor (mGluR)
Nl[etab"tmp‘c glutamate receptor (mGIuR) as a therapeutic target for the disease. These studies have revealed that core defects in multiple animal
Plasticity

models can be corrected by down regulation of mGIuR5 signaling. Although it remains to be seen if mGIuR5
antagonists or related approaches will succeed in humans with fragile X, the progress in fragile X stands as a
strong testament to the power of applying knowledge of basic neurobiology to understand pathophysiology
in a genetically validated model of human psychiatric disease. These breakthroughs and several of the
resulting drug development efforts are reviewed.
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1. Introduction

In 1943, Martin and Bell described a familial mental retardation
syndrome with an X-linked inheritance pattern (Martin & Bell, 1943),
known today as fragile X (FX) (Richards et al, 1981). FX is the most
common inherited cause of mental retardation and autism. It is estimated
to occur in 1:5000 males, and about half as many females (Coffee et al.,
2009). Nevertheless, because the disease affects fewer than 200,000
people in the U.S., FX is considered a rare disease by the National Institutes
of Health (NIH), and designated by the Food and Drug Administration
(FDA) as an “orphan” indication (FDA, 2010). As a result, this disease has
not, until recently, received much attention from large pharmaceutical
companies looking to develop therapies.

Currently, there is no treatment for FX. The approach to patients
focuses on managing symptoms using behavioral intervention and
special education. Medications, which include antipsychotics, stimu-
lants, and anticonvulsants (aimed at co-morbid aggression, attention
deficit, and seizure respectively), are used cautiously, with recogni-
tion that this population may be especially sensitive to adverse effects
of these drugs (see (Hagerman et al., 2009) for further review).

The recent surge in interest for developing FX therapies (NIH, 2010)
stems from significant progress in our basic science understanding of
the pathogenesis of the disease. Several breakthroughs—beginning with
the identification of the gene that is disrupted in FX (Verkerk et al.,
1991), development of a mouse model (Consortium, 1994), and
identification of the metabotropic glutamate receptor 5 (mGIuR5)-
dependent plasticity phenotype (Huber et al., 2002), followed by the
proposal of the “mGluR theory” (Bear et al., 2004), and culminating in
the validation of this theory by genetic rescue of FX by mGIuR5
knockdown (Dolen et al., 2007) as well as with pharmacologic blockade
of mGIuR5 (McBride et al., 2005; Yan et al., 2005; de Vrij et al., 2008)—
have lead to the identification of a novel therapeutic target for FX. Here,
we will review these advances and some of the resulting drug develop-
ment efforts.

2. FMRP

In the majority of patients, FX is caused by a CGG repeat expansion in
the FMR1 gene on the X chromosome (which disrupts proper folding of
the chromosome, making it susceptible to breaks, hence the name
fragile X) (Verkerk et al., 1991). This mutation causes hypermethylation
and transcriptional silencing of the gene, and the protein product, the
fragile X mental retardation protein (FMRP), is not made (Fuetal., 1991;
Pieretti et al., 1991). In a small minority of FX patients, a point mutation
in the gene causes the disease by disrupting normal function of FMRP
(De Boulle et al., 1993). Disease severity varies with the FMRP expres-
sion level, such that in females and mosaic males, who have some FMRP
expression, the disease is relatively mild, while the most severe cases are
males with a total absence of functional FMRP (De Boulle et al., 1993;
Lugenbeel et al., 1995; Kaufmann et al., 1999; Tassone et al., 1999; Reiss
& Dant, 2003; Loesch et al., 2004; Hatton et al., 2006). Accordingly, much
of the early research on FX focused on understanding the cellular
function of FMRP.

Studies of a de novo mutation in the [304N site of the FMR1 gene (De
Boulle et al., 1993; Feng et al.,, 1997a) and sequence homology analysis
of FMR protein structure (Ashley et al, 1993) revealed the mRNA
binding function of FMRP. FMRP has at least three mRNA binding
domains: two K-Homology (KH) and one RGG box (see below for more
on recently identified fourth domain (Bechara et al., 2009)). The 1304N
site encodes one of the two KH domains and the severity of the FX
phenotype in the patient carrying this mutation suggests that RNA
binding at this domain is critical to the biological function of FMRP (Feng
et al, 1997a). Although KH domains are thought to recognize and
competitively bind the so-called kissing complex (Darnell et al., 2005),
natural mRNA ligands containing this structure have yet to be identified.
The third RNA binding domain of FMRP is the RGG box, which recog-

nizes stem-G-quartet loops found in several FMRP associated mRNAs
(Schaeffer et al., 2001). Although point mutations highlighting the
phenotypic significance of this domain have not yet been identified,
FMRP-ligand mRNAs containing G quartets have been found (Brown et
al., 2001; Darnell et al.,, 2001), and as we will see below, encode proteins
that likely intersect with pathways relevant to the pathogenesis of the
disease.

The mRNA binding capacity of FMRP suggested that FMRP might
function to regulate the translation of mRNA to protein. Sucrose
gradient fractionation studies showing association of FMRP with the
sub-cellular translation machinery (ribosomes, polyribosomes, and
granules) further implicated FMRP in protein synthesis regulation
(Khandjian et al., 1995; Eberhart et al., 1996; Tamanini et al., 1996;
Corbin et al., 1997; Feng et al., 1997a,b; Brown et al., 2001; Zalfa et al.,
2003; Stefani et al., 2004; Aschrafi et al., 2005). However, these
findings have not been without controversy.

The majority of fractionation studies have shown that FMRP co-
sediments with polyribosomes and that this co-sedimentation is lost
with 1304N mutation, consistent with the idea that FMRP regulates
protein synthesis by binding to actively translating mRNAs (Khandjian
et al., 1995; Eberhart et al., 1996; Tamanini et al., 1996; Corbin et al.,
1997; Feng et al, 1997a; Brown et al, 2001; Stefani et al, 2004).
However, others have suggested an alternate mechanism whereby
FMRP interacts with BC1 (a non-translatable RNA) to repress translation
indirectly at the initiation step; this BC1-FMRP complex associates
instead with monomeric 80s ribosomes and with mRNAs in the lighter
fractions (and not polyribosomes) ((Zalfa et al., 2003; Bagni, 2008 but
see (Stefani et al.,, 2004; lacoangeli et al.,, 2008a,b)). Still others have
shown that FMRP co-localizes with high-density granules (Aschrafi
et al,, 2005; Chen et al., 2008), which may represent large ribosomal
aggregates whose translation has been stalled (Moult et al., 2006).
While each co-sedimentation profile suggests a different mechanism by
which FMRP might regulate protein synthesis, it is important to recog-
nize that fractionation studies of this kind provide only indirect evidence
that FMRP functions as a regulator of translation.

Direct evidence for FMRP's role in the regulation of protein synthesis
has come from metabolic labeling experiments that measure translation
in the presence and absence of functional FMRP both in vitro
(Laggerbauer et al., 2001; Li et al,, 2001; Dolen et al., 2007) and in vivo
(Qin et al., 2005a). These studies have consistently shown that FMRP
acts to inhibit protein synthesis. For example, Li et al. (2001) examined
the effect of recombinant FMRP on translation in rabbit reticulocyte
lysate (RRL) and showed an FMRP dose-dependent suppression of
translation of brain RNA. This suppressive effect was abolished by
competitive inhibition of FMRP and by removal of FMRP-binding
sequences from mRNA transcripts, providing evidence for the specificity
of the interaction between FMRP and the template mRNA (Li et al,
2001). This effect was shown to be due specifically to translation
suppression rather than increased mRNA degradation, since exposure of
mRNAs to FMRP in the absence of the translation machinery (from RRL)
produced no decrease in template levels (Li et al.,2001). Using the same
RRL assay as well as microinjected Xenopus oocytes, Laggerbauer et al.
(2001) have also shown a negative regulatory role for FMRP. In addition,
repression of translation is lost in FMRP with the I304N mutation in both
systems, consistent with the idea that this domain confers translation
regulatory function to the protein (Laggerbauer et al., 2001).

Dolen et al. (2007) have examined the role of FMRP in regulating
protein synthesis in a more intact in vitro preparation, using >>S-methi-
onine/cystine for metabolic labeling of hippocampal brain slice. These
studies showed that Fmr1 knockout (KO) mice (Consortium, 1994) have
approximately 20% increased hippocampal protein synthesis compared to
wild-type (WT), again consistent with a negative regulatory role for FMRP.
Furthermore, electrophoretic separation of radiolabeled translation
products showed that this increase in the Fmr1 KO is not limited to one
or few predominant protein species, but rather extends across a broad
range of resolved molecular weights (Dolen et al., 2007).
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Finally, Qin et al. (2005a) have examined a protein synthesis
regulatory role for FMRP in vivo. WT and Fmr1 KO mice were catheterized
and injected with an intravenous pulse of radioactive leucine. Auto-
radiograms of radioactively labeled sections of the brain were then
quantified by brain region and genotype. A number of brain regions
showed an increase in protein synthesis in the Fmr1 KO versus WT brain,
again consistent with FMRP's function as a negative regulator of trans-
lation. Importantly, these results proved that disruptions of protein
synthesis in the Fmr1 KO mouse are globally manifested in the brain and
measurable in the intact animal, raising the possibility that measure-
ments of protein synthesis could serve as a biomarker of disease (Bishu
et al., 2008, 2009). Indeed, studies are currently under way to test this
hypothesis in human patients with FX (NIH, 2010).

3. Metabotropic glutamate receptor signaling

Meanwhile, as the aforementioned studies began to reveal the
function of FMRP, significant advances were being made towards
understanding the mechanisms of glutamatergic signaling and synaptic
plasticity. Glutamate is the major excitatory neurotransmitter in the
mammalian central nervous system. Glutamatergic signaling is mediated
by both ionotropic and metabotropic receptors at the synapse. The
ionotropic glutamate receptors (iGluRs) include alpha-amino-3-hydroxy-
5-methyl-4-isoxazolepropionate (AMPA), kainate, and N-methyl-p-as-
partate (NMDA) receptors (Monaghan et al., 1985; Cincotta et al., 1989).
As shown in Fig. 1, the metabotropic glutamate receptors (mGIuRs) are a
family of eight receptors categorized into three groups (Group 1, 2 and 3)
based on their sequence homology, agonist and antagonist pharmacology,
and coupling to signal transduction pathways (Houamed et al,, 1991;
Masu et al,, 1991; Abe et al., 1992; Nakanishi, 1992; Tanabe et al,, 1992;
Saugstad et al.,, 1994; Conn & Pin, 1997).

Group 1 mGluRs (Gp1 mGluRs), which are further subdivided into
mGIuR1 and mGIuR5 subtypes, couple to Gg-like G-proteins, signal
through activation of phospholipase C (PLC), and are primarily postsyn-
aptic (Romano et al.,, 1995; Lujan et al., 1996). In contrast, Groups 2 and 3
mGIuRs couple to Gi-like G-proteins, signal through adenylate cyclase,
and are mostly presynaptic (Conn & Pin, 1997). The two Gp1 mGluRs
show complementary expression patterns, with mGIuR5 expression
highest in the hippocampus, neocortex, and striatum (but notably absent
in the cerebellum), whereas mGIuR1 expression is largely restricted to the
cerebellum (Shigemoto, 2000). For the purposes of the current discussion,
special attention will be given to mGIuR5 because the synaptic signaling
mechanisms relevant to the pathogenesis of FX have been most exten-
sively elucidated in the hippocampus and neocortex. However, because
the mechanistic approach to cerebellar phenotypes has also been vali-
dated for mGluR1, the role of these receptors in the pathogenesis of the
disease will be briefly addressed at the end of the discussion.

Percent sequence homology  Group  Transduction
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22:32; ] 1 Phospholipase C
mGluR2 Adenylate
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DmGIuRA
mGIuR7
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mGIuR8 cyclase
mGluR6

redrawn from Conn & Pinn, 1997

Fig. 1. Dendrogram and pharmacologic classification of mammalia(mGluR1-8) and
Drosophila (DmGIuRA) mGluRs.

Although mGIuR5 is canonically defined by its coupling to PLC
transduction, as shown in Fig. 2, more recent evidence suggests that
receptor signaling occurs through at least three distinct cascades.
(1) The canonical PLC cascade: phosphoinositol (PI) hydrolysis results in
the breakdown of phosphatidylinositol-4,5-bisphosphate (PIP;) into
two second messengers: diacylglycerol (DAG) (an endogenous activator
of protein kinase C) and inositol-1,4,5-triphosphate (IP3) (which
mobilizes receptor-mediated release of intracellular stores of Ca®™)
(Abe et al., 1992; Pin et al., 1992; Joly et al., 1995; Watabe et al., 2002).
(2) The PI3K/Akt/mTOR cascade: phosphorylation of the phosphoinosi-
tide 3-kinase (PI3K) activates Akt, which turns on the mammalian target
of rapamycin (mToR) (Hou & Klann, 2004; Antion et al., 2008; Ronesi &
Huber, 2008). (3) The extracellular signal-regulated kinase (ERK) cas-
cade: the tyrosine kinase Src phosphorylates and activates MEK, which
in turn phosphorylates and activates ERK (also called microtubule-
associated protein kinase, MAPK) (Ferraguti et al., 1999; Choe & Wang,
2001; Thandi et al., 2002; Berkeley & Levey, 2003; Adwanikar et al.,
2004; Gallagher et al., 2004; Mao et al., 2005; Grueter et al., 2006; Garcia
et al., 2008).

Interestingly, also shown in Fig. 2, all three pathways have been
directly or indirectly linked to the regulation of protein synthesis
(Gallagher et al., 2004; Hou & Klann, 2004; Klann & Dever, 2004; Banko
et al,, 2006; Davidkova & Carroll, 2007; Proud, 2007; Antion et al., 2008;
Park et al, 2008; Waung et al., 2008). For example, activated mToR
phosphorylates 40S ribosomal protein S6 kinase, which in turn phos-
phorylates ribosomal protein S6 (Hou & Klann, 2004; Klann & Dever,
2004; Banko et al., 2006; Antion et al., 2008). ERK activates the
MAPK-interacting kinase (Mnk), which leads to phosphorylation of the
eukaryotic initiation factor 4E (elF4E) (Banko et al., 2006). Both activated
mToR and ERK phosphorylate elF4E binding proteins (4E-BPs) (Klann &
Dever, 2004). Furthermore, stimulation of mGIuR5 can also induce
translational de-repression at synapses by inducing CYFIP1 dissociation
from elF4E, allowing for translation, perhaps through an interaction with
the Racl GTPase pathway (not shown in Fig. 2) (Napoli et al., 2008).
Together, these pathways when activated initiate 5’ cap-dependent
translation of mRNAs (Klann & Dever, 2004; Proud, 2007). Most recently,
calcium-dependent dissociation of eukaryotic elongation factor 2 kinase
(eEF2K) from mGIuR5 and phosphorylation of eukaryotic elongation
factor 2 (eEF2) by activated calcium-calmodulin (Ca?* -CaM)/eEF2K have
been implicated in rapid translation of the activity-regulated cytoskele-
ton-associated protein (Arc) (Park et al., 2008; Waung et al., 2008) and
microtubule-associated protein 1B (MAP1B) (Davidkova & Carroll, 2007)
in response to activation of mGIuR5. Although these experiments did not
specifically address the interaction between the eEF2K and PLC signaling,
a reasonable (but speculative) source for the second messenger calcium
implicated in eEF2K signaling is that which derives from coupling to PLC,
since it is known that activation of the PI hydrolysis by PLC results in
[P3-dependent release of calcium from intracellular stores (Abe et al.,
1992; Joly et al., 1995; Nakamura et al., 1999; Watabe et al., 2002; Dudman
et al, 2007; Hong & Ross, 2007). Together, these results suggest that
binding of glutamate to mGIuR5 activates multiple intracellular second
messenger cascades that regulate protein synthesis. Furthermore,
mGIuR5 activation recruits mRNAs to the actively translating polyribo-
some fraction (Muddashetty et al, 2007), induces protein synthesis
(Weiler & Greenough, 1993; Weiler et al.,, 1997; Job & Eberwine, 2001;
Todd et al, 2003; Davidkova & Carroll, 2007; Mameli et al, 2007;
Muddashetty et al., 2007; Westmark & Malter, 2007; Park et al., 2008;
Waung et al.,, 2008), and, as detailed below, many of the long-term
consequences of mGIuR5 activation are protein synthesis-dependent.

4. Metabotropic glutamate receptor-dependent synaptic plasticity

Activity-dependent synaptic plasticity is defined as any long-lasting
form of synaptic modification (strengthening or weakening) that is
synapse specific and is induced by specific patterns of pre- and/or
postsynaptic firing (Hebb, 1949; Bienenstock et al., 1982; Bear et al.,
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Fig. 2. Signaling cascades coupling to mGluRs (PI3K, MAPK, PLC) converge to regulate protein synthesis.

1987). It manifests as electrophysiological, molecular, and morphological
changes, and it provides the basis for most models of learning and mem-
ory as well as the development of response selectivity and cortical maps.
Synaptic plasticity can be triggered experimentally, producing long-
term potentiation (LTP) and long-term depression (LTD) of the synapse,
using a variety of induction protocols, including: theta-burst stimulation
(TBS), high-frequency stimulation (HFS), low-frequency stimulation
(LFS), paired-pulse LFS (PP-LFS), chemical (direct receptor activation
without afferent stimulation), and pairing protocol (afferent stimulation
paired with postsynaptic depolarization), to name a few. While early
mechanistic studies of LTP and LTD focused on the role of the NMDA
receptor-mediated induction, mGluR-mediated forms have also been
identified (Linden et al., 1991; Bolshakov & Siegelbaum, 1994; Oliet et
al., 1997; Huber et al., 2000; Karachot et al., 2001). Furthermore, it has
now become clear that neurons are highly variable in terms of the type
of LTP and LTD they express. Thus, when describing these phenomena, it
is necessary to define the specific synapse and circuit, the phase (induc-
tion, expression, and maintenance), and the developmental epoch (in-
cluding the recent history of synaptic activity) that is being studied (see
(Malenka & Bear, 2004) for review). For the purposes of the current
discussion, we will focus on the hippocampal CA1-Shaffer collateral
synapse because this is a well-characterized circuit for mGluR5-mediat-
ed LTD, with the caveat that alternate mechanisms for induction, ex-
pression, and maintenance may exist elsewhere in the brain.
mGluR5-dependent forms of LTD can be induced in hippocampal area
CA1 by stimulation of Schaffer collaterals with PP-LFS or by chemical
induction (by application of the specific mGIuR5 agonist (S)-3,5-
Dihydroxyphenylglycine, DHPG) (Bolshakov & Siegelbaum, 1994; Oliet
etal,, 1997; Schnabel et al.,, 1999; Huber et al., 2000; Fitzjohn et al., 2001;
Huber et al., 2001; Wu et al,, 2004; Volk et al., 2006; Volk et al., 2007).
Hippocampal DHPG-LTD is occluded by PP-LFS, is NMDA receptor
independent, and is absent in mGIuR5 KO mice, consistent with the idea
that this form of synaptic plasticity represents a distinct cellular

mechanism of synaptic modification mediated by mGIuR5 (Huber et
al,, 2001). Furthermore, since mGlu5 receptors are concentrated in an
annulus around the postsynaptic density (PSD) where they are stimu-
lated only under conditions of high glutamate release at the synapse
(Lujan et al., 1996; Kennedy, 2000), it seems likely that plasticity induced
by mGIuR5 subserves specific neuronal functions encoded by distinct
patterns of synaptic activity (Huber et al., 2000; Huber et al., 2001).

Induction of mGIuR-LTD in hippocampal CA1 requires translation but
not transcription, since protein synthesis inhibitors like cyclohexamide
and anisomycin, but not the transcription inhibitor actinomycin, prevent
the induction of paired-pulse- and DHPG-induced LTD (Huber et al., 2000,
2001; Hou & Klann, 2004). Furthermore, an injection of cap analogue
m’GppG into the postsynaptic cell blocks DHPG-LTD in CA1, indicating a
postsynaptic locus for protein synthesis dependence ((Huber et al., 2000)
that is it is developmentally regulated (see Nosyreva & Huber, 2005).
Postsynaptic coupling of mGIuR5 to intracellular signal transduction
pathways that regulate translation, described above, represents a likely
mechanism for the protein synthesis dependence of hippocampal mGIuR-
LTD. For example, inhibitors of ERK block mGIuR-LTD, and DHPG
treatment of hippocampal slice induces phosphorylation of ERK (Galla-
gher et al,, 2004) as well as ERK-dependent phosphorylation of Mnk1,
elF4E, and 4EBP (Banko et al.,, 2006). Consistent with these biochemical
findings, increasing elF4E complex availability by genetic elimination of
4E-BP2 increases the magnitude of DHPG-LTD in an ERK-dependent
manner (Banko et al., 2006). Inhibition of the PI3K/Akt/mToR pathway has
also been shown to block mGIuR-LTD (Banko et al., 2006; Ronesi & Huber,
2008).

Finally, RNAi knockdown of eEF2K in neuronal culture as well as
transgenic eEF2K KO in hippocampal slices, blocks DHPG-LTD, consis-
tent with the role of this signal transduction cascade in mediating the
protein synthesis dependence of hippocampal mGIuR-LTD (Davidkova
& Carroll, 2007; Park et al., 2008; Waung et al., 2008). However, given
the previous reports of the calcium independence of DHPG-LTD in the
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hippocampus (Schnabel et al., 1999; Fitzjohn et al., 2001), the proposed
role of Ca?™ in regulating this cascade (Ca?* dynamically modulates the
interaction of eEF2K with mGluR5 and eEF2K is a Ca>*/CAM dependent
kinase) (Park et al., 2008), may not be the whole story. Interestingly,
eEF2K also contains a putative Homer binding site (Park et al., 2008) that
is phosphorylated by multiple signaling kinases, including PI3K/mToR/
S6K, ERK, and PKA (Browne & Proud, 2002). Furthermore, Homer
scaffolding proteins link mGIuR5 to the PSD as well as to signaling
partners like IPsR (Tu et al,, 1999) Erk (Mao et al., 2005) and PI3K/Akt/
mToR (Ronesi & Huber, 2008). Disruption of this interaction between
Homer and mGIuR5 blocks mGIuR-LTD, mGluR-mediated protein
synthesis, and activation of PI3K/Akt/mToR pathways (Ronesi &
Huber, 2008).

At this time, it is unclear how each of these signaling cascades is
specifically recruited to encode presumptively distinct neuronal functions.
Nevertheless, as noted above, they each converge to initiate mGIuR5-
dependent translation and are available at the postsynaptic compartment
(Asaki et al., 2003), further highlighting the importance of local protein
synthesis for the induction of mGIuR-LTD.

Expression of mGIuR-LTD in the hippocampus occurs by regulation of
AMPA receptor (GluR1 and GIuR2 subunits) trafficking (Snyder et al.,
2001; Xiao et al., 2001; Watabe et al., 2002; Nosyreva & Huber, 2005;
Grooms et al,, 2006; Huang & Hsu, 2006; Moult et al., 2006; Nosyreva &
Huber, 2006; Volk et al., 2006; Davidkova & Carroll, 2007; Park et al.,
2008; Waung et al., 2008) as well as by changes in the biophysical
properties of AMPA receptors (Delgado and O'Dell, 2005; Huang & Hsu,
2006; Moult et al., 2006). When it has been examined, this process has
been shown to require the synthesis of new proteins at the synapse:
DHPG-induced AMPA receptor internalization and LTD are abolished by
translation inhibitors (Snyder et al., 2001; Nosyreva & Huber, 2005, 2006)
as well as by blockade of eEF2K-dependent Arc protein synthesis (Park et
al., 2008; Waung et al., 2008) or MAP1B (Davidkova & Carroll, 2007).

Thus far, the discussion of mGIuR-LTD has focused on mechanisms for
the initial decrease in synaptic strength lasting 30-60 min. However,
perhaps of greater significance are the processes that allow this form of
LTD to last hours, days, or even weeks. Structural remodeling of the
synapse has long been hypothesized to be the mechanism for long-term
maintenance of plasticity (see (Alvarez & Sabatini, 2007) for review). The
dendritic spine is the postsynaptic site of excitatory transmission in the
mammalian brain; its volume is linearly correlated the surface area of the
postsynaptic density (PSD) it contains (Freire, 1978; Spacek & Hartmann,
1983; Harris & Stevens, 1989), and PSD surface area is linearly correlated
with AMPA receptor content of the synapse (Nusser et al., 1998). Thus,
regulation of glutamatergic receptor trafficking, required for the expres-
sion of synaptic plasticity (see above, and Malinow & Malenka, 2002), is
thought to be the preamble to morphologic changes in spine number,
shape, and size.

Several studies have shown that NMDA-LTP induction produces an
increase in the size of potentiated dendritic spines (Engert & Bonhoeffer,
1999; Matsuzaki et al., 2001; Lang et al., 2004; Matsuzaki et al., 2004;
Yang et al., 2008), whereas NMDA-LTD induction results in a decrease in
dendritic spine head size (Chen et al., 2004; Nagerl et al., 2004; Zhou et
al., 2004; Bastrikova et al., 2008; Yang et al., 2008). Recently, a promising
mechanistic link between AMPA receptor delivery and structural
growth of the dendritic spines during NMDA-LTP has been proposed.
Following LTP induction, recycling endosomes carrying AMPA receptors,
as well as other synaptic proteins and machinery, translocate into
dendritic spines where they exocytose their cargo and fuse with the
membrane, thereby simultaneously increasing dendritic spine size and
delivering AMPA receptors (Park et al., 2006). It remains to be seen
whether similar mechanisms are employed for LTD-induced AMPA
receptor internalization and spine size reduction. This mechanism of
structural plasticity is mediated by NMDA receptor-dependent Ca®*
signaling coordinated by myosin Vb (MyoVb), a Ca®>* sensitive motor
(Wang et al., 2008). However, it is unclear whether these mechanisms
will be employed for the maintenance of mGIluR5-dependent synaptic

plasticity. Another member of this motor protein family, myosin Va
(MyoVa), is recruited by a synaptic stimulation with DHPG for
localization of TLS, an mRNA binding protein, and its ligand mRNAs
into dendritic spines (Yoshimura et al., 2006), raising the possibility that
these motor proteins may play a role in mGluR5-mediated plasticity.

While the structural plasticity studies described above have
examined the role of NMDA receptor-dependent forms of LTP and
LTD, changes in spine size have also been observed with the application
of DHPG to hippocampal neurons in culture (Vanderklish & Edelman,
2002). Furthermore, like DHPG-LTD induction (Huber et al., 2000; Hou &
Klann, 2004; Banko et al., 2006; Davidkova & Carroll, 2007; Park et al.,
2008; Waung et al.,, 2008) and DHPG-induced AMPA receptor
internalization (Snyder et al., 2001; Nosyreva & Huber, 2005, 2006;
Davidkova & Carroll, 2007; Park et al., 2008), this process is protein
synthesis-dependent (Vanderklish & Edelman, 2002). There is also
evidence that both ERK (Kornhauser & Greenberg, 1997; Wuetal., 2001;
Goldin & Segal, 2003; Zhou et al., 2004) and mToR signaling cascades
regulate synaptic remodeling (Jaworski et al., 2005; Kumar et al., 2005;
Jaworski & Sheng, 2006), although these studies did not specifically
address coupling to mGIuR5 transduction. Taken together, these results
support the idea that morphological changes at the level of dendritic
spines provide a potential structural basis of how DHPG-induced
decreases in synaptic strength are made long lasting, and that this
process, like mGIuR-LTD induction and expression, is protein synthesis-
dependent.

The discussion thus far has focused on mGIuR-LTD, but mGluRs
mediate other forms of synaptic plasticity as well. For example, mGIuR5
has been implicated in a phenomenon known as metaplasticity (the
plasticity of plasticity); at this level, plasticity is not expressed as a
change in synaptic strength but instead as a change in the ability to
induce subsequent synaptic plasticity (Abraham & Bear, 1996). For
example, the activation of mGluRs facilitates the subsequent induction
of NMDA receptor-dependent LTP (Cohen & Abraham, 1996; Cohen et
al.,, 1998; Raymond et al., 2000; Stoop et al., 2003; Bortolotto et al., 2005,
2008; Ayala et al,, 2009) and inhibits subsequent induction of NMDA
receptor-dependent LTD (Harney et al., 2006; Ayala et al., 2009; Ireland
& Abraham, 2009). The activation of mGIuR5 has also been implicated in
late-phase LTP (L-LTP) (Francesconi et al., 2004) and synaptic
depotentiation (Zho et al., 2002) both of which are protein synthesis-
dependent. These findings may reflect the fact that mGIuR5 activation
regulates NMDA receptor trafficking (Snyder et al., 2001; Watabe et al.,
2002; Ireland & Abraham, 2009) and function (Alagarsamy et al., 2001).
As new synaptic plasticity induction protocols are developed, it is likely
that other forms of mGluR-mediated synaptic plasticity will be
discovered. For now it seems clear that many forms require protein
synthesis for their induction, expression, and perhaps also maintenance.

5. Metabotropic glutamate receptor-mediated plasticity in vivo

With the expanse of scientific literature dedicated to LTP and LTD, it
can be easy to overlook the fact that these experimental paradigms were
originally developed to model intrinsic patterns of neuronal activity
responsible for naturally-occurring experience-dependent plasticity
and learning in the intact animal (Bliss & Lomo, 1973; Ito & Kano, 1982).
Before their discovery, landmark studies of in vivo ocular dominance
plasticity (ODP) in monkeys and cats had already established a role for
experience-dependent modifications in shaping the circuitry of the
brain during development (Hubel & Wiesel, 1964, 1970; Hubel et al.,
1977). The advent of transgenic technologies (Mansour et al., 1988) and
adaptation of the ODP paradigm to rodents (Drager, 1978; Gordon &
Stryker, 1996; Porciatti et al., 1999; Prusky & Douglas, 2003; Sawtell et
al., 2003; Frenkel & Bear, 2004 ), has made it possible to return to this in
vivo plasticity paradigm, revealing shared mechanisms between ODP
and LTP/LTD (see Smith et al., 2009 for review).

Establishing a role for mGIuR5 in mediating these developmental
processes in visual cortex has been more difficult. Original studies posited
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a role for mGIuR5 based on the observation that the developmental
decline in glutamate-stimulated PI turnover is correlated with the decline
in experience-dependent synaptic plasticity in visual cortex (Dudek &
Bear, 1989; Dudek et al., 1989). This proposition was bolstered by studies
showing the laminar redistribution of mGIuR5 expression in the visual
cortex across development (with the highest density of layer 4 expression
corresponding to the height of the critical period) (Reid et al., 1995, 1997).
Arguing in favor of a role for mGluR-mediated synaptic plasticity in this
brain region, studies using the mGIuR antagonist (+/)-alpha-methyl-
4-carboxyphelylglycine (MCPG), showed a blockade of LTD (Haruta et al.,,
1994; Kamishita et al., 1995) and depotentiation (Hensch & Stryker, 1996)
induced with LFS in visual cortical slice. Infusion of MCPG into kitten visual
cortex in vivo, however, did not disrupt visual cortical plasticity (expressed
as a change in contralateral/ipsilateral evoked unit response ratio)
induced by monocular deprivation (MD), which led these authors to
argue for dissociation between synaptic plasticity processes (mGIuR-LTD/
depotentiation) and ODP (Hensch & Stryker, 1996). Subsequent studies,
however, demonstrated that although MCPG does competitively block
actions of the synthetic glutamate agonist 1S,3R-aminocyclopentane-
1,3-dicarboxylic acid (ACPD), it is ineffective against specific metabotropic
actions of glutamate (PI turnover) in visual cortex (Huber et al., 1998).
Significantly, coupling to PI turnover is necessary for the induction of LTD
in the visual cortex (Choi et al., 2005).

Recently, molecular genetic knockdown of mGIuR5 (Jia et al., 1998)
has allowed for the re-examination of the role of mGIuR5 in ODP (Dolen
et al.,, 2007). As referred to above, ODP can be assessed in mice using
visually evoked potentials (VEPs) recorded in layer 4 of visual cortex
(the site of primary thalamocortical inputs) (Porciatti et al., 1999), and it
has been correlated with behavioral measures of visual acuity (Prusky &
Douglas, 2003). Chronic VEP recordings allow for the measurement of
field potentials from each eye (contralateral and ipsilateral to the
recording electrode), both before and after MD by monocular lid suture.
In juvenile WT mice, 3 days of MD induces contralateral-eye response
depression (MD-RD), whereas 7 days of MD induces ipsilateral-eye
response potentiation (MD-RP) (Frenkel & Bear, 2004). In contrast, in
mGIuR5 heterozygous mice at this age, 3 days of MD induces neither
MD-RP (normal) nor MD-RD (abnormal) (Dolen et al,, 2007), impli-
cating mGluR5 in the modulation of this form of plasticity. Although it is
tempting to draw parallels between mGIuR5-mediated MD-RD and
mGIuR-LTD, it is important to recognize that mechanisms of LTD and
ODP vary across visual cortical layers (Daw et al., 2004; Crozier et al.,
2007; Liu et al., 2008), and to date, only in layer 2/3 of visual cortex have
there been pharmacologically reliable descriptions of mGIuR-LTD (Choi
et al., 2005). Future studies examining LTD in layer 4 of visual cortex in
mGIuR5 KO mice will therefore be instructive. Furthermore, although
both protein synthesis (Taha & Stryker, 2002) and ERK (Di Cristo et al.,
2001; Takamura et al., 2007) are also required for ODP, at this time it is
merely speculative to suggest coupling to mGluR5-mediated plasticity
(but see below for further discussion).

6. A role for mGluRs in regulating the inhibitory excitatory balance

Agonists of Gp 1 mGluRs act as convulsants in rodents (Tizzano et al.,
1995; Conn & Pin, 1997). Conversely selective Gp 1 mGluR antagonists
block seizures in some (Thomsen et al., 1994; Tizzano et al.,, 1995;
Chapman et al., 2000; Borowicz et al., 2004; Zadrozniak et al., 2004;
Lojkova & Mares, 2005; Yan et al., 2005; Jesse et al., 2008; Mares, 2009;
Pacey et al.,, 2009) but not all (Zadrozniak et al., 2004; Lojkova & Mares,
2005; Loscher et al., 2006; Olive & Becker, 2008; Witkin et al., 2008)
rodent models of epilepsy. Interestingly, mGIuR5 antagonists appear to
be more effective as anticonvulsants during development (through
postnatal week 3 in rodents) (Lojkova & Mares, 2005; Mares, 2009), and
ineffective for example in controlling seizure during ethanol withdrawal
(Olive & Becker, 2008), whose pathogenesis is thought to be NMDA
receptor-mediated (Nagy, 2008). Thus the variation in anticonvulsant

activity likely reflects the heterogeneity of seizure etiologies and the
specificity of mGIuR5 receptor blockade as a mechanism of action.

Consistent with this idea, mGIuR5 stimulation induces epileptiform
discharges in the hippocampus, a process that is protein synthesis-
dependent (Merlin et al.,, 1995; Merlin & Wong, 1997; Merlin et al.,
1998; Wong et al,, 1999; Lee et al., 2002). In addition, there is a growing
evidence that mGIuR-LTP between inhibitory (GABAergic) and excit-
atory (glutamatergic) neurons, serves to regulate the inhibitory-excit-
atory balance in the brain (see (Anwyl, 2009) for review). Moreover,
stimulation of mGIuR5 with DHPG induces mobilization of mRNA
encoding GABA-AS receptors to dendrites (Dictenberg et al., 2008).
Whether this up-regulation reflects homeostatic or homosynaptic
changes is unclear at this time. Nevertheless, taken together, these
results suggest that mGluR-mediated modulation of the inhibitory-
excitatory balance is sensitive to the state of mGluR5-dependent protein
synthesis (Stoop et al., 2003).

7. The mGluR theory of fragile X

Human patients with FX have significant cognitive impairments, with
mental retardation in the moderate-to-severe range, as well as behavioral
problems, dysmorphic features, and seizure disorder (Hagerman &
Hagerman, 2002). As reviewed above, synaptic plasticity is the foundation
of most theories of learning and memory and cognitive development;
therefore early studies of the pathogenesis of the disease examined the
Fmr1KO mouse model for possible disruptions of plasticity. However,
investigations of NMDA receptor-dependent forms of plasticity failed to
reveal a deficit in Fmr1 KO mice (Godfraind et al, 1996; Paradee et al,,
1999; Huber et al., 2002). At around the same time, a novel form of LTD in
the hippocampus had just been characterized. As discussed earlier, this
form of LTD is induced by activation of mGIuR5 and is normally protein
synthesis-dependent (Huber et al., 2000, 2001). Because stimulation of
mGIuR5 with DHPG had been shown to lead to synaptosomal translation
of FMRP (Weiler et al., 1997), it seemed possible that FMRP was a
downstream protein necessary for the induction, expression, or mainte-
nance of mGIuR-LTD, which led to the prediction that mGluR-LTD would
be deficient in Fmrl KO mice. Instead, mGIuR-LTD was significantly
exaggerated in Fimr1 KO mice (Huber et al., 2002).

At the same time, studies of the function of FMRP had begun to reveal
its role as a negative regulator of protein synthesis, likely through its
interaction with polyribosomes (see discussion above). In neurons, this
translation machinery can be found at the base of dendritic spines where it
has long been thought to exert local control over synaptic function
(Steward & Schuman, 2001). Furthermore, recall that synaptic mGIuR5
activation induces protein synthesis (Weiler & Greenough, 1993; Weiler
et al.,, 1997; Job & Eberwine, 2001; Todd et al., 2003; Davidkova & Carroll,
2007; Mameli et al., 2007; Muddashetty et al., 2007; Westmark & Malter,
2007; Park et al., 2008; Waung et al., 2008) and many of the long-term
consequences of Gp1 mGIuR activation are protein synthesis-dependent
(Huber et al., 2000, 2001; Karachot et al., 2001; Snyder et al., 2001;
Vanderklish & Edelman, 2002; Gallagher et al., 2004; Hou & Klann, 2004;
Banko et al., 2006; Davidkova & Carroll, 2007; Mameli et al., 2007; Pfeiffer
& Huber, 2007; Park et al., 2008; Ronesi & Huber, 2008; Waung et al,,
2008). Taken together, these findings suggested the possibility that Gp1
mGluRs and FMRP might work in functional opposition to regulate mRNA
translation at the synapse, and that in the absence of FMRP, unchecked
mGIluR-dependent protein synthesis leads to the pathogenesis of the
disease (Bear et al., 2004). This so called “mGIuR theory” (see Fig. 3) has
now been tested directly, and as we will see next, these and other results
overwhelmingly support the use of Gpl mGIuR antagonists in the
treatment of FX.

8. Validation of the mGluR theory

As noted above, previous attempts to characterize mGluR-mediated
process have been confounded by off-target and non-specific effects of
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Fig. 3. The mGIuR theory: Opponent regulation of protein synthesis by FMRP and group I mGluRs, is disrupted in the absence of FMRP. Reduction of mGIuR signaling restores the

balance and corrects FX phenotypes.

pharmaceuticals aimed at these receptors. A method that avoids such
confounds is genetic analysis, because here the contribution of a gene
(or protein product) is determined by preventing (in the case of
knockout) or reducing (in the case of knockdown) expression of target
proteins. Genetic interaction experiments represent a further iteration
of this strategy and are accomplished by generating crosses between
mutants (e.g., double mutants) to determine the contribution of
multiple genes to a single phenotype. Taking advantage of this powerful
tool has made it possible to test the mGluR theory directly, by generating
double mutants of Fmr1 and Grm5 (the gene that encodes mGluR5) and
examining multiple phenotypes relevant to the pathogenesis of FX
(Dolen et al., 2007). Importantly, these experiments were carried out in
mice, which unlike fruit fly (Drosophila melanogaster), carry the full
complement of mammalian mGluRs. Because the fly ortholog of mGluR
(DmGIuR) couples to adenylate cyclase (making it more similar to
Group 2 mGIluRs, see Fig. 1), and because unlike in mammalian brain,
acetylcholine (ACh), not glutamate, is used as the primary excitatory
neurotransmitter in the central nervous system (Su and O'Dowd, 2003;
Lee and O'Dowd, 1999), this model organism has limitations for testing
the role of Gp1 mGluRs in the pathogenesis of FX (Dolen & Bear, 2005).

8.1. Correction of protein synthesis and mGIuR-LTD phenotypes

In these studies, the increased hippocampal protein synthesis
phenotype seen in Fmr1 KO mice (described above), was restored to
WT levels by a 50% reduction of mGIuR5 expression in the Fmr1 KO/Grm5
heterozygote cross (CR) (Dolen et al, 2007). Consistent with genetic
interaction between FMRP and mGIuR5, there was no evidence (from
electrophoretic separation) that these proteins regulate different subsets
of translation products. Furthermore, because the Grm5 heterozygote
(Het) did not itself show decreased protein synthesis, these results argue
against the null hypothesis (i.e., no genetic interaction, return to WT
levels reflects the average of unrelated changes in opposite directions).
The lack of a protein synthesis phenotype in Het mice also suggests that a
therapeutic dose of an mGIuR5 antagonist for FX patients should not
have negative side effects in unaffected individuals. As noted above,
protein synthesis measurements are currently being developed as a
biomarker of disease in human patients with FX (NIH, 2010), so it is
encouraging to see that this phenotype responds to manipulation of
mGIuR5 signaling in the Fmr1 KO model of the disease.

The exaggerated mGIuR-LTD phenotype seen in Fmr1 KO mice is
likely to reflect the increased basal rate of protein synthesis because in
these animals, the dependence on protein synthesis is lost (Hou et al.,

2006; Nosyreva & Huber, 2006; Park et al., 2008). The functional
consequence of 50% reduction in mGluRs is a concomitant reduction
in the magnitude of DHPG-LTD in CR compared to Fmrl KO mice,
which parallels the return to WT levels of protein synthesis in CR mice
(Dolen et al., 2007). Together, these results suggest that the over-
produced proteins in the Fmr1 KO are able to maintain mGIluR-LTD in
the absence of further protein synthesis. Consistent with this inter-
pretation, Arc protein has been reported to be constitutively up-
regulated in Fmr1 KO brain ((Zalfa et al., 2003) but see Park et al.,
2008), and DHPG stimulation induces rapid synthesis of Arc protein in
WT but not Fmr1 KO mice (Park et al., 2008; Waung et al., 2008). As
noted above, both knockdown and acute blockade of new Arc
synthesis prevent mGIuR-LTD and AMPAR trafficking in WT mice
(Waung et al., 2008). Consistent with Arc's role as an “LTD-expression
protein,” AMPA receptor internalization is also exaggerated in Fmr1
KO mice (Nakamoto et al., 2007). Because Fmr1/Arc double KO mice
show incomplete impairment of mGIuR-LTD (Park et al., 2008), these
studies reveal that other overproduced proteins must be available to
sustain mGluR-LTD in the Fmr1KO hippocampus.

Indeed, compelled by the explanatory power of the mGIuR theory,
a number of studies have identified other mRNA targets of FMRP
regulated by mGIluR5 including: APP, CaMKII, eEF1A, GluR1/2, MAP1B,
PSD95, SAPAP 3/4, RGS-5, GABA-A ((Brown et al., 2001; Darnell et al.,
2001; Schaeffer et al., 2001; Miyashiro et al., 2003; Sung et al., 2003;
Todd et al., 2003; Kindler et al., 2004; Antar et al., 2005; Huang et al.,
2005; Hou et al., 2006; Bramham & Wells, 2007; Davidkova & Carroll,
2007; Muddashetty et al., 2007; Narayanan et al., 2007; Westmark &
Malter, 2007, Zalfa et al., 2007; Dictenberg et al., 2008; Menon et al.,
2008), reviewed by Bassell (Bassell & Gross, 2008; Bassell & Warren,
2008)). Many of these mRNAs have been shown to be elevated in the
polyribosome fraction at the basal state in the Fmr1KO and insensitive
to further DHPG-induced-recruitment into the actively translating
fraction (Muddashetty et al., 2007).

Consistent with the genetic rescue of the exaggerated protein syn-
thesis phenotype (Dolen et al., 2007), several studies have reported basal-
state elevations of MAP1B and CaMKII protein in Frmr1 KO brain (Zalfa et
al., 2003; Hou et al., 2006, Lu et al., 2004 #91), which occlude further
DHPG-induced translation of these proteins (Hou et al.,, 2006; Mudda-
shetty et al., 2007). Similarly, the amyloid precursor protein (APP) as well
as two of its degradation products, AB4o APy, are basally elevated in Fmr1
KO and occlude DHPG-mediated up-regulation of APP in synaptoneuro-
somes (Westmark & Malter, 2007). Although PSD-95 protein levels are
not basally elevated in Fmr1 KO brain, DHPG-induced translation of PSD-
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95 protein (Todd et al.,, 2003; Muddashetty et al., 2007) and PSD-mRNA
stabilization (Zalfa et al., 2007) seen in WT are also absent in the Fmr1 KO
brain. Each of these proteins has variously been implicated in the induc-
tion, expression, and maintenance of LTD (Snyder et al., 2001; Delgado
and O'Dell, 2005; Hsieh et al., 2006; Davidkova & Carroll, 2007; Mameli et
al,, 2007; Xu et al., 2008), so future studies examining their contribution to
the exaggerated mGIuR-LTD phenotype in EX will be informative. Finally,
PP2A and S6K1 have been implicated in DHPG-mediated phospho-
regulation of FMRP as a repressor of translation (Narayanan et al., 2007,
2008). Whereas these findings provide another mechanistic link between
mGIuR5 and FMRP in the regulation of protein synthesis, the role of this
putative link in WT mGIuR-LTD or expression of exaggerated mGIuR-LTD
in Fmr1 KO is unknown at this time.

8.2. Correction of dendritic spine phenotype

One of the hallmark features of FX in humans is the overabundance of
long thin spines (Hinton et al., 1991; Irwin et al., 2001). This phenotype is
recapitulated in the Fmr1 KO mouse (Comery et al., 1997; Nimchinsky et
al,, 2001; Galvez & Greenough, 2005; McKinney et al., 2005; Dolen et al.,
2007; Pfeiffer & Huber, 2007; de Vrij et al., 2008; Bilousova et al., 2009)
and parallels the protein synthesis-dependent increase in the density of
long thin spines seen in response to stimulation with DHPG (Vanderklish
& Edelman, 2002). To test the opponent regulatory role for mGIuR and
FMRP, genetic interaction studies have examined the dendritic spine
density phenotype, revealing complete rescue of the Fmr1 KO phenotype
by 50% reduction of mGIuR5 signaling in both apical and basal dendrites of
layer 2/3 visual cortical pyramidal neurons (postnatal day 30) (Dolen et
al., 2007). Again arguing against the null hypothesis and verifying the
therapeutic value, 50% reduction of mGIuR5 signaling had no effect on
spine morphology on its own (Dolen et al,, 2007). This rescue of the
dendritic spine morphology has recently been replicated using mGIuR5
antagonists (MPEP and fenobam) in hippocampal cell culture (de Vrij et
al,, 2008). If AMPA receptor internalization is indeed the preamble to
morphologic remodeling of the synapse (see discussion above), the
dendritic spine phenotype in FX is consistent with exaggerated DHPG-
mediated, protein synthesis-dependent AMPA receptor internalization
(Snyder et al.,, 2001; Nosyreva & Huber, 2005, 2006; Davidkova & Carroll,
2007; Nakamoto et al., 2007; Park et al., 2008) and the loss of AMPA
receptors in the cerebral cortex of Fmr1 KO mice (Li et al., 2002). The
genetic rescue of this phenotype, as well as the protein synthesis and
mGIuR-LTD phenotypes, provides further evidence for a common
mechanistic underpinning for the pathogenesis of FX (Dolen et al,, 2007).

8.3. Correction of in vivo plasticity phenotypes

As discussed above, studies have revealed common mechanisms
between ODP and synaptic plasticity, providing in vivo evidence for the
functional importance of these processes shaping the circuitry of the
brain during development. Their importance is further highlighted by
the discovery of their role in the pathogenesis of FX, a neurodevelop-
mental disorder (Dolen et al., 2007). These studies revealed that Fmr1
KO mice have a hyper-plastic ODP profile. Recall that juvenile WT mice
show MD-induced response depression (MD-RD) after 3 days of
monocular lid suture, and MD-induced response potentiation (MD-
RP) after 7 days of monocular lid suture (Frenkel & Bear, 2004). In the
Fmr1 KO mouse, the plasticity profile is characterized by both MD-RD
(normal) and MD-RP (abnormal) after 3 days of MD by lid suture. This is
in one sense the opposite of the hypo-plastic profile seen in Grm5 HT
mice, which have neither MD-RD (abnormal) nor MD-RP (normal) after
3 days of MD. Reduction of mGIuR5 signaling by 50% restores the Fmr1
KO plasticity profile to WT levels, arguing in favor of genetic interaction
between mGIuR5 and FMRP (Dolen et al., 2007). Indeed, because FMRP
is a negative regulator of translation, these findings lend further support
to the protein synthesis dependence of ODP (Taha & Stryker, 2002),
perhaps mediated by mGIuR5 coupling to ERK (Di Cristo et al., 2001). As

mentioned above, further study in vitro is necessary to shed light on the
synaptic mechanisms of this interaction. For now, note that like the
exaggerated mGIuR-LTD phenotype in hippocampus, the ODP pheno-
type in the visual cortex reflects exaggerated plasticity in Fmr1 KO and is
corrected by reduction of mGIuR5 expression.

Although Fmr1 KO and Grm5 HT phenotypes represent in some sense
opposite plasticity profiles, it is unlikely that the genetic rescue in the CR
mice reflects the average of unrelated changes in opposite directions,
because this interpretation would predict compound effects of
phenotypes, resulting in a plasticity profile characterized by both MD-
RP (Fmr1 KO phenotype) and absence of MD-RD (Grm5 HT phenotype).
Instead, CR mice have normal MD-RD and normal absence of MD-RP
after 3 days of monocular deprivation (Dolen et al., 2007). These results
provide further evidence for the therapeutic value of targeting mGlu5
receptors for the treatment of FX. Nevertheless, the presence of an ODP
phenotype in Grm5 HT mice raises the concern that these drugs may
have unwanted side effects in unaffected controls that will need to be
monitored when establishing therapeutic doses.

8.4. Correction of learning and memory phenotype

Humans with FX show mental retardation in the moderate-to-
severe range, so identifying a cognitive behavioral phenotype in FX has
been a priority. Nevertheless, until recently, studies of cognitive perfor-
mance in Fmr1 KO mice have revealed only subtle deficits (Consortium,
1994; Kooy et al., 1996; D'Hooge et al., 1997; Paradee et al., 1999;
Dobkin et al., 2000; Musumeci et al., 2000; Peier et al., 2000; Van Dam et
al., 2000; Yan et al., 2004; Koekkoek et al., 2005; Qin et al., 2005b; Zhao
et al., 2005; Brennan et al., 2006) (see for review Bernardet & Crusio,
2006). Taking into consideration the proposed role of Gp1 mGluRs and
FMRP in regulating translation, genetic interaction studies examining a
protein synthesis-dependent form of hippocampal learning and
memory—inhibitory avoidance extinction (IAE) (Power et al., 2006)—
have revealed an interesting Fmr-1 KO phenotype (Dolen et al., 2007). In
these animals, inhibitory avoidance (IA) learning, which is mediated by
NMDA receptor-dependent LTP (Whitlock et al., 2006), is not different
from WT (Consortium, 1994; Dolen et al., 2007) but may be strain
specific (see Qin et al., 2005b). The extinction of this memory (IAE) is
exaggerated in Fmr1 KO mice (Dolen et al., 2007), and is reminiscent of
the exaggerated mGIuR-LTD phenotype in the hippocampus of Fmr1KO
mice (Huber et al, 2002). Furthermore, it is corrected by reducing
mGIuR5 expression by 50%, providing further evidence of the thera-
peutic value of targeting this receptor for treatment of the cognitive
phenotype in FX (Dolen et al.,, 2007). Once again the Grm5 HT mice
showed no impairments, arguing against the null hypothesis and provi-
ding further evidence for the safety of targeting this receptor.

8.5. Correction of seizure phenotype

The most common neurological abnormality in FX is epilepsy, which
has an estimated incidence of 15-20% (Musumeci et al., 1988; Hecht,
1991; Kluger et al., 1996; Musumeci et al., 1999; Berry-Kravis, 2002).
Seizures present as both partial seizure (specific focus at onset) and
generalized seizure (diffuse whole brain involvement from onset)
(Berry-Kravis, 2002). Patients lose consciousness during seizure
(complex seizure), and when generalized in form, the seizure episode
is characterized by convulsions (e.g., tonic-clonic) (Musumeci et al,
1999). If uncontrolled, status epilepticus (SE) is a rare but fatal clinical
outcome. Finally, the age of onset of these seizures is 2 years, and in most
cases, seizures and epileptiform activity resolve by puberty (Berry-
Kravis, 2002). The pathogenesis of this phenotype in FX is unknown, but
it is interesting to note that patients show hypersensitivity to acoustic
stimuli (Miller et al., 1999) and elevated evoked responses to these
stimuli in cortex (Castren et al., 2003).

The epilepsy phenotype is recapitulated in the Fmrl KO mouse
model of the disease. Susceptibility to audiogenic seizures (AGS) is
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consistently and significantly higher in Fmr1-KO mice compared to WT
littermates (Musumeci et al., 2000; Yan et al., 2004, 2005; Dolen et al.,
2007; Pacey et al., 2009). Audiogenic seizures are generalized,
convulsive (tonic-clonic), complex, and evoked by a loud (125 dB SPL
at 0.25 m) auditory stimulus. Similar to epilepsy in human EX, they are
present early in postnatal development and resolve by post-adolescence
(Yan et al., 2005). In addition, hypersensitivity to auditory stimuli leads
to a lower seizure threshold in Fmr1-KO mice (Chen & Toth, 2001), and
FMRP expression itself is modulated in response to sensory stimulation
and seizure induction in vivo (Irwin et al., 2000; Todd & Mack, 2000).

Because Gp1l mGluRs have been implicated in modifying seizure
susceptibility, and because this process is developmentally regulated and
protein synthesis-dependent (see discussion above), genetic interaction
studies sought to examine the specific interaction between mGIuR5 and
FMRP in regulating the process (Dolen et al., 2007). These studies have
shown that reduction of mGIuR5 expression significantly reduces seizure
incidence in Fmr1 KO mice (Dolen et al., 2007). Although the rescue in this
case was incomplete, these results nevertheless implicate mGIuRs in the
pathogenesis of the seizure phenotype in FX and raise the possibility that
insufficient reduction of mGIuR5 gene dosage accounts for the incomplete
rescue. This interpretation is consistent with studies using the mGIuR5
antagonist MPEP, which completely blocks the AGS phenotype in a dose-
dependent manner (Yan et al, 2005), and in vitro studies showing
increased mGIuR5-mediated epileptiform discharges in hippocampus of
Fmr1 KO mice (Chuang et al,, 2005). Recalling the mGluR-stimulated
synthesis of APP and the increased levels of this protein in the FmriKO
(Westmark & Malter, 2007), the mGluR-mediated mechanism of
pathogenesis is also consistent with the increased seizure susceptibility
seen in mice over-expressing APP, a phenotype that is exacerbated in the
FRAXAD double mutant (lacking FMRP and over-expressing APP) (West-
mark et al., 2008).

Several studies have implicated a disruption of GABAergic signaling
in the pathogenesis of the epilepsy phenotype in FX. For example,
GABA-A receptor expression (EI Idrissi et al., 2005), particularly the
delta subunit (D'Hulst et al., 2006), is reportedly decreased in the Fmr1
KO, and the GABA-A5 mRNA is a ligand of FMRP (Miyashiro et al., 2003;
Dictenberg et al., 2008). Furthermore, electrophysiological studies have
suggested that Fmr1 KO mice have decreased GABAergic inhibitory tone
in the subiculum (Curia et al., 2009) and striatum (Centonze et al., 2008)
despite normal basal synaptic transmission, excitability, and paired-
pulse facilitation in the CA1 region of the hippocampus (Godfraind et al.,
1996; Paradee et al,, 1999; Huber et al.,, 2002). Interestingly, mGIuR5
agonists stimulate the mRNA transport of GABA(AG6) to dendrites
(Dictenberg et al., 2008), and this response is absent in Fmr1 KO mice. As
discussed earlier in the context of exaggerated mGIuR-LTD, this pheno-
type in the Fmrl KO could represent occlusion of mGluR5-mediated
stimulation, leading to the over-production of GABA-Ad receptor
proteins. However, the results described above suggest the opposite
change in GABA-A receptor expression (El Idrissi et al., 2005; D'Hulst et
al., 2006; Centonze et al., 2008; Curia et al.,, 2009). There are several
potential explanations to resolve this paradox: (1) The mGluR-stimu-
lated recruitment of GABA-A6 mRNA to dendrites is a homeostatic
adaptation to constitutive hyperexcitability (mediated by mGIuR5-
stimulated synthesis of other proteins (Chuang et al., 2005)), and this
response is depleted rather than occluded in the Fmr1 KO. (2) Recent
reports of FMRP as a positive modulator of translation (Bechara et al.,
2009) raise the possibility that GABA-A6 mRNA is a ligand for FMRP
translational activation, in which case constitutive mGluR-stimulated
recruitment of GABA-AS mRNA to dendrites could lead to reduced GABA
(A6) receptor protein expression the Fmr1 KO. (3) The mixed phenotype
reflects the complex interplay of circuit-level changes, including those
mediated by mGIuR-LTP at inhibitory (GABAergic) synapses (Anwyl,
2009) as well as the contribution of G-protein (Gi/o)-coupled GABA-B
receptors.

Indeed, the GABA-B receptor agonist arbaclofen (also called R-
baclofen) has very recently been shown to attenuate the AGS phenotype

in Fmr1 KO mice (Pacey et al., 2009). These results are complicated by
the reduced seizure susceptibility in the Rgs4/Fmr1 double-knockout
mouse (Pacey et al., 2009), because Rgs4 encodes regulator of G-protein
signaling 4 (RSG4), an inhibitor of Gp1 mGluRs (Saugstad et al., 1998).
However, more recently studies showing additional RGS4 coupling to
GABA-B receptors and inward rectifying K* channels (KIR) (Fowler et
al.,, 2007) suggest that the attenuation of the phenotype may reflect the
contribution of GABA-B receptors. Furthermore, the GABA-B receptor
antagonist CGP 46381 exacerbates the AGS phenotype in double-knock-
out mice but not in WT mice (in WT, only co-administration of both CGP
46381 and the mGIuR agonist CDPPB induces AGS) presumably because
mGluR5-dependent signaling is already elevated in the double KO but
not WT mice (Pacey et al., 2009). Together with the Fmr1/Grm5 genetic
interaction studies (Dolen et al., 2007), these results suggest that the
AGS phenotype in FX reflects a contribution of exaggerated signaling
through mGIuR5 and reduced signaling through GABA-B receptors.
Future studies examining the interplay between these two G-protein
signaling cascades will therefore be informative.

8.6. Somatic phenotypes: correction of
growth abnormality but not macroorchidism

Fragile X boys and girls show an increased rate of growth, as
measured by height, during the preadolescent period (Loesch et al.,
1995). The hypothalamus is an integral part of the hypothalamic-
pituitary-adrenal (HPA) axis that controls endocrine function. The
lateral and ventromedial hypothalamus are thought to be important
for feeding behaviors: lesions of these regions lead to anorexia and
obesity, respectively, in mice (Bellinger & Bernardis, 2002). Moreover,
both the ventromedial and the lateral hypothalamus have high levels
of mGIuR5 expression (van den Pol et al.,, 1995). In addition, mGIuR5
is a regulator of feeding behavior, and mGlur5 antagonists are known
to be appetite suppressants (Bradbury et al., 2005). This growth
abnormality is recapitulated in the Fmr1 KO mouse, and although it is
subtle (20% at its maximum), pre-pubertal increases in body weight
are apparent (Dolen et al.,, 2007). Furthermore, genetic interaction
studies reveal that mGluR HT mice have normal body weight, as do
Fmr1 KO animals, with a 50% reduction in the mGIuR5 expression
(Dolen et al., 2007). Although the mechanism of this rescue is not
clear, this evidence points to clear genetic interaction between FMRP
and Grmb5, perhaps at the level of the HPA axis, in regulating body
weight. Furthermore, these results provide evidence that somatic
phenotypes regulated in the brain can be rescued by targeting
mGIuR5. As noted before, the absence of a phenotype in the HT argues
for a true genetic interaction and for the safety of this manipulation in
unaffected controls.

The macroorchidism phenotype (large testicles) has been recog-
nized for over 20 years and occurs in over 80% of adult males with FX
(Nielsen et al., 1982). Nevertheless, this phenotype is not specific to
FX; itis estimated to occur in nearly 30% of the mentally retarded male
population, and FX accounts for only a small subset of these cases
(Primrose et al., 1986; Hagerman et al., 1988). These estimates
preceded identification of the mutation in FX, so the diagnosis of the
disease is uncertain. Both the phenotype itself and the developmental
profile are recapitulated in the Fmr1 KO mouse model (Kooy et al.,
1996; Peier et al., 2000; Dolen et al., 2007). Gp 1 mGluR RNAs are
abundantly expressed in the testicles, with high levels of both mGIuR5
and mGluR1 expression in the seminiferous tubuli and germ cells and
high mGluR1 expression in the Sertoli cells (Storto et al., 2001). These
expression studies raise the intriguing possibility that the pathogen-
esis of the macroorchidism phenotype in FX is related to exaggerated
Gp1 mGluR signaling. Despite these correlations, genetic interaction
studies failed to reveal evidence for mGIuR5's involvement in the
pathogenesis of this phenotype. Even when mGIuR5 was completely
knocked out, the phenotype persisted on the Fmrl KO background,
showing that the absence of rescue was not related to mGIuR5 gene
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dosage. Nevertheless, both Grm5 HT and KO mice showed normal
testicular weight, indicating that reduction of mGIuR5 signaling
should have no adverse effects in unaffected patients. Because the
other Gp1 mGluR—mGIluR1—is also highly expressed in the testicles,
the possibility remains that this is the relevant receptor for the
pathogenesis of the macroorchidism phenotype.

8.7. Cerebellar phenotypes: the role of mGIuR1

The mGIuR theory applies to both Gpl mGluRs—mGIuR5 and
mGluR1 (Bear et al., 2004). However because mGluR1 expression is
largely restricted to the cerebellum (Shigemoto, 2000), the discussion
thus far has focused on mGluR5. Nevertheless, impairments in
cerebellar function are likely relevant to the clinical presentation of
FX, because these patients are known to have deficits in coordination
and motor function (Hagerman & Hagerman, 2002; Koekkoek et al.,
2005). As discussed above, Gp1 mGIuR-LTD was initially described at
the cerebellar parallel fiber (PF) - Purkinje cell (PC) synapse (Linden
etal., 1991) and later confirmed to be mGluR1-dependent (Aiba et al.,
1994). Like hippocampal mGluR5-dependent plasticity at the CA1-
Shaffer collateral synapse, mGluR1-LTD at the cerebellar PF-PC
synapse is protein synthesis-dependent (Karachot et al., 2001).
Moreover, this form of synaptic plasticity is also exaggerated in the
Fmr1 KO mouse (Koekkoek et al., 2005), consistent with an opponent
regulatory role of mGluR1 and FMRP (Bear et al., 2004; Huber, 2006).

Although it is unknown at this time whether the long-term
expression mechanism of PF-PC mGLuR1-LTD involves remodeling of
dendritic spines, as in the neocortex and hippocampus, dendritic
spines on cerebellar Purkinje cells in the Fmr1 KO mice are elongated
(Koekkoek et al., 2005). These findings suggest that morphological
consequence of mGIuR1 activation in the cerebellum recapitulates
morphological plasticity in response to activation of mGIuR5 in the
hippocampus (Vanderklish & Edelman, 2002) and that likewise, this
process is exaggerated in FX.

Finally, eyeblink conditioning is a form of classical conditioning
that has been used to study cerebellar learning and memory. This
behavioral paradigm is thought to require mGluR1-LTD because the
LTD is impaired in mGIluR1 KO mice (Aiba et al., 1994) and is necessary
for computational models of this behavior (Medina et al., 2000).
Interestingly, eyeblink conditioning is impaired in both Fmr1 KO mice
and human patients with disease (Koekkoek et al., 2005), once again
linking mGluR1 to the pathogenesis of a cerebellar phenotype in FX
(Bear et al., 2004; Huber, 2006). Together, these findings implicate
mGIuR1 as a viable therapeutic target for FX.

9. Clinical trials

Transgenic animal models of Mendelian single gene disorders
provide the opportunity to interrogate molecular pathophysiology
associated with the clinical diseases. In particular, the effects of the
fragile X mutation on brain development and function have been
facilitated by the generation of Fmr1 KO animal models. As reviewed
above, the accumulated evidence suggests that mGIuR5 is a valid
target for development of drugs to treat FX. The ultimate goal of
molecular medicine—translation of basic science discoveries into
novel therapeutics—may soon be realized for FX. Several companies
are currently assessing the hypothesis that selective antagonism of
mGIuR5 signaling will provide therapeutic benefit for humans with
FX.

9.1. Therapies targeting mGIuR5

Pharmaceutical interest in inhibitors of mGIuR5 stems from
preclinical research suggesting potential therapeutic utility for a
variety of human conditions including anxiety (Nordquist et al.,
2008), convulsions (Moldrich et al., 2003), pain (Walker et al., 2001),

depression (Brodkin et al., 2002), Parkinson's disease(Breysse et al.,
2002) and gastroesophageal reflux disease (GERD) (Frisby et al.,
2005). Recently, Addex Pharmaceuticals has demonstrated efficacy in
man for migraine and GERD in preliminary, proof-of-concept studies
(Addex Pharmaceuticals Inc: Addex Pharmaceuticals first half 2007
financial results. Press Release (2007) July 25).

Neuropharm Group PLC recently reported results of a single-dose
trial with the selective mGIuR5 antagonist fenobam in 12 subjects
with FX (Berry-Kravis et al.,, 2009). Single doses up to 150 mg were
well tolerated. Although the study was not powered to assess efficacy,
some trends for beneficial clinical effects were reported. Of note, the
anxiolytic efficacy of fenobam was originally assessed in clinical trials
performed from 1978 to 1982 (Itil et al., 1978; Pecknold et al., 1980;
Lappierre & Oyewumi, 1982; Pecknold et al., 1982), but development
was discontinued. Recently, Porter et al. (2005) discovered fenobam
to be a selective mGluR5 antagonist. Because safety and tolerability of
fenobam in humans had been previously established, it was possible
to rapidly open an IND and initiate clinical trials in subjects with FX.
Although fenobam is a selective mGIuR5 antagonist in vitro, it is
rapidly metabolized and has variable systemic bioavailability in vivo.
Furthermore, although efficacy comparable to other mGIuR5 antago-
nists has been demonstrated in typical preclinical anxiety models, the
atypical behavioral disruption observed with fenobam suggests either
significant off-target activity or formation of a biologically active
metabolite. Plasma levels of fenobam are highly variable in humans
after oral dosing and are not correlated with efficacy (Itil et al., 1978;
Berry-Kravis et al., 2009). Thus, it is not clear at this time whether
additional clinical trials with fenobam will provide a thorough test of the
mGluR theory in people with fragile X.

In addition, Novartis has completed a phase-2 fragile X trial in Europe
with its mGIluR5 modulating compound (AFQ56), although the results of
this trial have not yet been published (http://www.clinicaltrials.gov/ct2/
show/NCT00718341?term=fragile+X&rank=7). Finally, most recently
(in November 2009) Roche has initiated a phase-2 fragile X trial in the U.S.
with its mGluR5-modulating compound (R0O4917523) with an estimated
study completion date of June 2010 (http://clinicaltrials.gov/ct2/show/
NCT01015430?term=fragile+x+roche&rank=1).

9.2. Therapies targeting GABA-B

Drugs that inhibit glutamate release have the potential to reduce
excessive mGluR-mediated protein synthesis. For example, GABA-B
receptor agonists inhibit presynaptic release of glutamate, postsynaptic
transmission and intracellular signaling downstream from mGIuR5
(Scanziani et al., 1992; Isaacson & Hille, 1997; Sohn et al,, 2007) and
therefore may indirectly inhibit signaling through mGIuR5 receptors. As
predicted, the selective GABA-B agonist baclofen attenuates the AGS
phenotype observed in Fmr1 KO mice (Pacey et al., 2009).

The R-isomer of baclofen (arbaclofen) is known to be a more potent
GABA-B agonist than the S-isomer (Hill & Bowery, 1981) and is reported
to be more potent in a variety of preclinical biologic and behavioral
assays (Olpe et al., 1978; Johnston et al., 1980; Haas et al., 1985; Fattore
et al., 2002). Seaside Therapeutics initiated a trial in November 2008 to
assess safety, tolerability, and efficacy of STX209 (arbaclofen) in subjects
with fragile X (NIH, 2010). This placebo controlled, double-blind,
crossover study will evaluate the safety, tolerability, and efficacy of 28
consecutive days of dosing of STX209 in 60 subjects with FX. The
primary efficacy outcome measure is the irritability subscale of the
Aberrant-Behavior Checklist score (http://clinicaltrials.gov/ct2/results?
term=arbaclofen+fragile+x).

10. Development of novel mGluR5 antagonists
The potent mGIuR5 antagonist STX107 came from a portfolio of

mGIuR5 compounds discovered by scientists at Merck & Co., Inc. A
number of studies conducted at Merck highlighted the compound's
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desirable drug-like properties, as well as the ability to penetrate the
blood-brain barrier and bind mGIuR5 receptors in the brain. After
Seaside Therapeutics in-licensed the compound and demonstrated its
efficacy in animal models of FX, it was then subjected to the battery of
tests necessary to enable the filing of an investigational new drug
(IND) application with the FDA. Included in those studies were in vitro
studies such as genotoxicity assays (Ames test and chromosome
aberration assay) and studies to address effects on an important
cardiac ion channel (hERG). In vivo, dose-ranging and repeated-dose
good laboratory practice (GLP) toxicology studies were conducted in
rats and primates. The rat toxicology study design also incorporated
an in vivo genotoxicity component (in vivo micronucleus assay) as
well as a CNS safety study. Independently, cardiovascular (primate),
respiratory (rat), and gastrointestinal (rat) safety studies were
conducted. Seaside Therapeutics conducted these studies under a
cooperative translational research grant with the NIH. Results from all
studies were evaluated, the results were compiled in a full IND
document that was approved by the FDA, and Phase 1 trials in normal
human volunteers are ongoing (http://clinicaltrials.gov/ct2/show/
NCT00965432?term=fragile+x&rank=20). A favorable profile of
STX107 in normal human volunteers will allow progression into
studies in subjects with FX.

While the majority of advanced compounds of current interest are
the result of historical drug discovery programs, next-generation
mGIuR5 antagonists continue to be pursued. For example, Seaside
Therapeutics is partnering with the Vanderbilt Program in Drug
Discovery at Vanderbilt University Medical Center to discover novel
mGIuR5 antagonists. Initial efforts focused on high-throughput
screening and targeted combinatorial chemistry to generate new
compounds. The goal of this collaboration is to not only focus on the
use of these antagonists but also to incorporate new biological
insights into the disease, thus translating new knowledge and novel
compounds into potential effective treatments.

11. Conclusions

The human genome was sequenced on the promise that
understanding the genetic basis for disease would point the way to
fundamentally new treatments. FX stands poised to fulfill this promise
of “molecular medicine”. Although it remains to be seen if mGIuR5
antagonists or related approaches will succeed in humans with FX; it
is now well established that core defects in multiple animal models
can be corrected by down regulation of mGIuR5 signaling. The
progress in FX research and treatment stands as a strong testament to
the power of applying knowledge of basic neurobiology to understand
pathophysiology in a genetically validated model of human psychi-
atric disease.
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