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Abstract
Most natural scenes are too complex to be perceived instantaneously in their entirety. Observers
therefore have to select parts of them and process these parts sequentially. We study how this
selection and prioritization process is performed by humans at two different levels. One is the
overt attention mechanism of saccadic eye movements in a free-viewing paradigm. The second is
a conscious decision process in which we asked observers which points in a scene they considered
the most interesting. We find in a very large participant population (more than one thousand) that
observers largely agree on which points they consider interesting. Their selections are also
correlated with the eye movement pattern of different subjects. Both are correlated with
predictions of a purely bottom–up saliency map model. Thus, bottom–up saliency influences
cognitive processes as far removed from the sensory periphery as in the conscious choice of what
an observer considers interesting.
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Introduction
Due to limitations of the human visual system, only a small amount of visual information
can be fully processed at any given time. Light reflected from that area in a scene that is
fixated will fall on the fovea, and thus be processed in the highest spatial detail. Visual
attention can also be used to select objects or locations for preferential processing. While the
exact function of attention differs according to various models, attention can generally be
thought of as facilitating processing of certain areas or objects along with the inhibition of
unattended regions.
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An important question, then, is how attention is guided in artificial and natural scenes. This
topic has been investigated using both response time and eye movement measurements. For
instance, in visual search tasks participants are instructed to manually respond to a target
presented among a number of distractors. Early studies demonstrated that response times are
faster if the subjects are first cued to the location where the target subsequently appeared
(Posner, 1980), and that they depend little on the number of distractors if the target is
defined by a unique feature (Treisman & Gelade, 1980). It is generally agreed that items can
be selected in two separate ways. The first is bottom–up attentional selection, which is a
fast, automatic, stimulus-driven mechanism that operates based on the uniqueness or
salience of an item’s features. Irrelevant distractor items with a unique color (Theeuwes,
1992) or those that appear abruptly (Yantis & Jonides, 1984) have been shown to delay
response time to the target, suggesting that those items capture attention automatically.
However, response times to targets are sometimes not affected by the appearance of unique
distractors, particularly when the target and distractors are defined by different properties
(e.g., Folk, Remington, & Johnston, 1992), or when the features of the target and distractors
are known ahead of time (Bacon & Egeth, 1994). This implies that items can also be
selected via top–down attention, which is a slower, goal-oriented method of selection that
operates based on the observer’s intentions or expectations.

The use of eye movements to study attention is based on the assumption that there is a close
link between where individuals fixate and where they attend. The premotor theory of
attention, for instance, states that visual attention becomes directed to a spatial location
before eye fixations are generated to that area (Rizzolatti, Riggio, Dascola, & Umiltá, 1987;
Rizzolatti, Riggio, & Shelgia, 1994). Support for this theory comes from findings that show
a close link between attention and fixations. For instance, Hoffman and Subramaniam
(1995) showed that detection of peripheral targets is enhanced when a saccade is set to be
programmed to the target’s location, even when participants are informed ahead of time that
the target has a greater probability of occurring at a different location. This suggests that
attention precedes the deployment of eye movements leading to faster responses to targets
appearing at to-be fixated regions. Thus, although covert attention and eye movements can
be voluntarily dissociated (as shown in the classical Posner, 1980, task), in many cases
fixation locations are a good indicator of where people are attending, and consequently
which objects or locations are receiving the most detailed processing.

Saliency
Several computational models of attention have been proposed which make predictions
about where individuals attend when viewing complex scenes. The main premise of these
models is that the entirety of the visual scene initially receives coarse, preattentive
processing (Treisman & Gelade, 1980). This global information is insufficient for object
recognition, however, and attention must be directed serially to regions in the scene to bind
feature information from different dimensions (e.g., color, orientation) into a usable
representation, e.g., for visual search (Wolfe, 1994). The question of how attention is
deployed is, in general, a very complex one since it involves the internal state of the
observer, including short-term and long-term goals, memory contents, expectations, etc.
Substantial progress was made when Koch and Ullman (1985) removed these difficulties by
focusing on the bottom–up (data-driven) part of attentional control, i.e., that part which is
determined by the sensory input alone. Notably, they introduced the concept of a saliency
map, defined as a topographically organized feature map that represents the instantaneous
saliency of the different parts of a visual scene. Assuming that the most salient stimuli
deserve the most attention, the bottom–up part of attentional control is thus reduced to the
computation of the saliency map and then finding its maxima. In other words, the initial
mechanism for selecting regions of the scene for higher-level processing is based on the

Masciocchi et al. Page 2

J Vis. Author manuscript; available in PMC 2010 August 4.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



conspicuity of each location in the scene (Koch & Ullman, 1985). This predicts that
participants should attend to the most salient regions of a scene first, then to lower local
maxima in the saliency map in the approximate order of their prominence.

The concept of the saliency map led to a computational implementation (Itti, Koch, &
Niebur, 1998; Niebur & Koch, 1996) which allowed its predictions to be tested
quantitatively. This implementation identifies the most salient, or locally distinctive, areas in
an image across three dimensions (and many spatial scales): color, orientation, and intensity.
The values of each dimension are initially stored separately in three distinct feature maps,
which are later combined to form a master saliency map. Attention is proposed to be
directed serially in a winner-take-all fashion to the location in the image corresponding to
the highest saliency value in the master map, and then in decreasing order to the location
with the next highest saliency value. An inhibition-of-return mechanism (Posner, Rafal,
Choate, & Vaughan, 1985) discourages attention from immediately returning to previously
attended areas. Since the observer’s goals or expectations are not taken into account, and the
computation of saliency is based solely on the visual properties of the image, this model’s
predictions rely purely on bottom–up information.

Eye movements
Several studies have explored the predictive value of the saliency map model. The most
direct test of the model would compare covert attentional selection choices with model
predictions. It is technically easier to instead use eye fixations as the dependent measure,
i.e., to test where humans attend against the model’s predictions and, of course, how humans
control their eye movements is a question of great interest by itself. In the first published
study applying the saliency map model towards understanding human eye movements,
Parkhurst, Law, and Niebur (2002) recorded participants’ eye movements as they free-
viewed a series of complex images (natural scenes and fractals, with image statistics
comparable to those of natural scenes). They then compared the fixation locations with the
saliency model’s predictions and found that the model predicted participants’ fixations
significantly better than chance. As expected, the prediction was better for the first fixation
than for later fixations since top–down influences are likely weaker for the first fixation
when less is known about the image contents. Areas of high texture contrast, another
example of bottom–up influences, were also shown to attract fixations (Parkhurst & Niebur,
2004). Because the saliency model’s predictions are based solely on the bottom–up features
of the images, Parkhurst et al. concluded that eye movements, and hence attention, are
drawn to salient locations in scenes. In more recent work, Foulsham and Underwood (2008)
asked observers to first view natural scenes with the goal of memorizing them and then, on a
second presentation, decide whether a given scene had been viewed previously or not. They
confirmed that saliency is a significantly better predictor of fixation locations than random
models, both during the memorization and the recognition phase of the experiment. This
does not seem to be the case when participants are performing a visual search task for a
known target: in this case, they are able to cognitively override low-level features such that
their eye movements are not preferentially directed to salient distractors (Underwood &
Foulsham, 2006) although the presence of salient distractors increases reaction times
(Foulsham & Underwood, 2009). This latter effect is presumably due to covert attention
being directed to salient items without resulting in eye movements. Thus, saliency directly
influences eye movements during tasks involving a “scanning” of the scene (as in memory
encoding and retrieval tasks), and low-level saliency influences covert though not
necessarily overt attention even during top–down dominated visual search tasks.
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Interest
A related body of research has explored whether interesting locations in scenes draw
attention and eye movements. Using a change detection paradigm, Rensink, O’Regan, and
Clark (1997) found that participants were faster to detect changing items which were rated
by a separate group of participants as being of central interest to that image. Rensink et al.
suggested that interesting locations or objects attract peoples’ attention, resulting in
improved change detection in those areas of the scene.

In an early study, Mackworth and Morandi (1967) had one group of participants subjectively
rate the most informative regions in a set of images, while a separate group viewed the same
images as their eye movements were monitored. The main finding was that participants in
the eye monitoring group fixated longer on the areas of the images that participants in the
rating group independently rated as more informative. This method of asking participants to
identify the most informative regions of images likely biases them to select regions high in
top–down information, for instance areas or objects that are semantically important for
identifying the scene. This suggests, then, that areas high in top–down or semantic
information also attract attention and fixations. More recent studies have confirmed this link.
For instance, Henderson, Weeks, and Hollingworth (1999) found that participants spend
more time fixating semantically inconsistent objects in scenes, but that initial fixations were
unaffected by the presence or absence of scene-inconsistent items. These results are
consistent with the conclusions of Parkhurst et al. (2002) that early fixations are
predominately influenced by image saliency, while later fixations are more influenced by
top–down factors.

Correlating attention, eye movements, and interest
We use an approach that is inspired by that employed by Mackworth and Morandi (1967).
We instructed participants to select, order and mark (by mouse clicks) the five most
“interesting locations” in a series of images, without time pressure. This method of defining
interesting regions has several advantages. It is a rather natural behavior and we consider it
likely that it simultaneously reveals bottom–up and top–down influences on attention,
although we have no control about their relative contributions. Second, the selected
interesting locations are inherently sorted by importance. This is an improvement over
methods that do not provide a relative ranking, and matches well with eye movement studies
that use fixation number as a ranking system.

The purpose of the present study was to examine subjectively determined interest points.
The first question asked is the degree to which participants agreed upon which points they
perceived as interesting. While the outcome might have been different, we show that this
agreement is surprisingly strong. This, then, allows us to ask our second main question, how
well the interesting locations are correlated with other measures of attention. In the
computer vision literature the term “interest points” typically refers to those areas of an
image which are important for object or scene identification and are defined computationally
rather than subjectively. These regions are generally highly salient (Wolf & Deng, 2005) or
invariant across different viewpoints or lighting conditions (Schmid, Mohr, & Bauckhage,
2000). While these interest points appear to attract attention and fixations (Privitera & Stark,
2000), they are often determined using the bottom–up features of images and thus may not
take top–down factors into account.

In Experiment 1 participants in an online study clicked on what they deemed to be the five
most interesting locations in each of a series of images. Due to our ability to collect data
from a large number of participants (more than one thousand), we first examined whether
interest points are determined idiosyncratically, or if large numbers of participants tended to
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agree upon which areas of a scene are the most interesting. High consistency would be
expected if interesting locations are primarily based on properties of the image itself, such as
bottom–up saliency, while low consistency would be expected if interest points are
determined based on individually different preferences (or if substantial variability is added
by external noise processes). To determine the correlation between saliency and interesting
locations, we also created a saliency map for each image using the saliency model of Itti et
al. (1998) and compared the model’s predictions to participants’ interest point selections.

In Experiment 2, a separate set of subjects participated in an eye tracking experiment and
free-viewed the same set of images presented in Experiment 1. The purpose of this
experiment was to determine whether interesting locations attract attention by comparing
participants’ fixations with the regions of the scene that participants in Experiment 1 rated as
interesting.

Experiment 1
The first purpose of Experiment 1 was to establish whether interesting locations are
determined idiosyncratically, that is whether different people find different locations
interesting, or whether selections are consistent across participants. If selections are
consistent, then one would expect the majority of interest points to be grouped, or clustered,
around a small number of locations per image. Such a finding would imply that some feature
inherent in the image is accounting for the clustering and would be inconsistent with the
claim than interest points are determined based on individual, varying preferences.
Secondly, to examine whether bottom–up factors could account for interest point selections,
we created a saliency map for each image using the implementation of Itti et al. (1998), and
we compared its predictions to participants’ interest point selections. If interest points are
based primarily on bottom–up features, we expect a high correlation between the saliency
maps and interest points.

Method
Participants—A total of 1395 entries were collected from a Web site affiliated with The
Johns Hopkins University. The experimental methods were approved by the Johns Hopkins
Institutional Review Board. These entries were initially filtered based on the responses to a
demographic questionnaire at the beginning of the experiment. Only data from individuals
who reported normal or corrected to normal vision, normal color vision and being 18 to 99
years old were included. Next, to minimize the number of repeat participants, we removed
those subjects who reported having participated in the experiment before. Also excluded
were participants with the same screen names (see below) or IP addresses as those of
previous participants. This resulted in a total of 802 (425 males, 377 females) unique
participants with a mean age of 27.4 years (SD = 9.8 years). All demographic information
was self-reported.

Stimuli and apparatus—A total of 100 images were used, with 25 images selected from
each of four categories: buildings, fractals, home interiors, and landscapes (see Figure 1 for
an example of an image from each category). These stimuli are a subset of the images used
in Parkhurst et al. (2002), and spatial frequency analyses of the images are provided in
Parkhurst and Niebur (2003). On average, each image was viewed by 183 participants.

A custom designed Java application was used to conduct the online interest point
experiment. Participants viewed 15 images selected randomly from the whole image set and
presented sequentially at a resolution of 640 × 480 pixels at the top-center of their browser
window. Due to the online nature of the study, there was no control of the image display
(e.g., properties of the monitor, background illumination, etc.) or the visual extent of the
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images as viewed by the participants, which varied as a function of screen size, resolution
and viewing distance. Note that this considerable variability in image presentation
conditions will decrease whatever clustering effect we observe. Thus, our measures for
clustering as well as for the correlation between the bottom–up model and the responses of
the participants must be considered conservative estimates.

Procedure—Participants first read an online consent document and gave their consent to
participate by providing a screen name. Next, they answered a series of demographic
questions, including whether they could see their computer screen without any difficulties,
whether they were colorblind, their age, and whether they had participated in the experiment
before. Participants were then instructed that they would view 15 sequentially presented
images, and for each image they should, “Click the 5 points that are the most interesting to
you.” Each time a participant clicked on a location, a red circle appeared at that location and
remained visible until all five locations for that image were selected. The next image then
appeared automatically. The experiment was self-paced and took approximately 5 minutes.
At the end of the experiment participants could elect to repeat the procedure and view
another 15 randomly selected images as many times as they chose, which many elected to
do. Only responses from the first 45 trials, in each of which the participant saw a unique
image, were included in the analyses. Thus, no participant ever saw the same image more
than once. We used only the first 45 trials (3 complete sets) because we wanted to obtain a
representative sample of normal observers. We did not use all the data from the (few: 46
total) participants who did more than 3 complete sets of images because we were concerned
that those observers might have atypical traits (e.g., obsessive-compulsive).

An alpha level of .05 was used in all experiments, and the Greenhouse–Geisser adjustment
was used when applicable. We note that the p-values we found in the randomization tests
were usually well below this level.

Results and discussion
Interest point selections
Reaction times: Figure 2 shows the mean reaction times for the five interest point
selections. An analysis of variance (ANOVA) revealed a main effect of selection number,
F(4, 3204) = 134.13, MSE = 8.39, p < .001. Paired-samples t-tests showed that first
selections were the slowest, second selections were the fastest, and subsequent selections
showed a steady increase in reaction time, all p < .01. One explanation for this pattern is that
participants initially viewed the entire scene for an extended time to determine the most
interesting location, as well as to locate the next few interesting regions before making their
first selection. Consequently, the choice to make the subsequent selections was facilitated
and the time shortened.

Clustering of interest points: We now address one of the central questions of this study,
whether different participants select the same regions in the scenes as being most interesting,
or if interesting locations are largely determined idiosyncratically. Because of its central
importance (any conclusions comparing interest points with fixations and bottom–up
saliency that are made in the second part of this report would be meaningless if interest
points were idiosyncratic, i.e., would not show inter-individual commonalities), we measure
clustering using four different methods. The first is a qualitative illustration, showing
selection patterns for representative images from all image types. We then apply three
different quantitative measures of clustering. The first of these compares the mean distances
between interest points which, as is shown, is significantly lower than would be expected in
the absence of clustering. The next method measures the number of interest points close to
others; we show that these numbers are significantly higher than would be expected in the
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absence of clustering. These assessments of clustering were chosen since they are similar to
those used in previous work in this field. The fourth, and final, method we used is a standard
k-means algorithm.

To qualitatively present the clustering, Figure 3 shows two images from each of the four
image categories, with interest point selections plotted as colored dots (red for first and blue
for following selections) superposed on the image. Results shown are representative for the
whole data set: participants tended to select similar regions as interesting, resulting in
around six to nine clusters of interest points per image with a moderate number of interest
points falling outside the clusters. Thus, different participants select the same regions in the
scene as being interesting, which would not be the case if interest point selections were
determined idiosyncratically.

A more quantitative technique of determining clustering is to calculate whether interest
points are closer together than would be expected by chance. If they are, this would suggest
that different participants select similar regions as interesting. To determine whether there
was more clustering of interest points than would be expected by chance, we first found the
(x, y) coordinate of each interest point location, and we determined its distance from every
other interest point in the same image. We then calculated the fraction of interest points that
were separated by a given number of pixels. We used bins of 10 pixels, i.e., we determined
the fraction of interest points that were between 1 and 10 pixels from another interest point,
then 11 to 20 pixels away, and so on up to 50 pixels (we chose this maximal distance since
beyond it the clustering effects begin to be counteracted by the compensation that has to
occur at sufficiently large distances).

Next, we quantified the amount of clustering expected by chance. When computing the
chance values, we have to be careful to avoid effects of systematic correlations that may be
present in all images. For instance, participants may weigh the center of the image higher,
either because this is the default position at the center of each trial or because they expect
that important items have been placed by the image creator in the center (photographer’s
bias) or for other reasons (top–down and bottom– up contributions that generate a center
bias were recently analyzed by Tseng, Carmi, Cameron, Munoz, & Itti, 2009). Indeed, we
found that both interest-point selections and eye fixations (determined in Experiment 2, see
below) were heavily biased centrally, as shown in Figure 4. Following Parkhurst and Niebur
(2003), we therefore created a shuffled data set by comparing each interest point in one
image to all interest points from a randomly selected image. For instance, the interest points
for Image 1 were compared to those of Image 35, etc. This method ensured that any
clustering we did observe was not due to inherent and systematic subject biases, for instance
to select regions in the center of the image as interesting.

Figure 5 shows the mean percentage of interest points as a function of distance from each
interest point selection. To determine whether interest points were closer together thank
what would be expected by chance, an analysis of variance (ANOVA) with distance (groups
of 10 pixels) and clustering data set (actual, shuffled) as within-subjects variables and image
type (buildings, fractals, interiors, landscapes) as a between-subjects variable examined the
fraction of interest points which were within the first 5 bins (of 10 pixels width) from each
interest point. A main effect of data set was found, F(1, 96) = 710.04, MSE = 0.297, p < .
001, which was due to more clustering in the actual than shuffled data set, as well as a main
effect of distance, F(4, 384) = 65.70, MSE = 0.123, p < .001. Furthermore, there was a main
effect of data type, F(3, 96) = 4.41, MSE = 0.324, p < .01. There was also an interaction
between distance and data set, F(4, 384) = 177.75, MSE = 0.116, p < .001, as well as an
interaction between distance and image type, F(12, 384) = 11.69, MSE = 0.123, p < .001. All
of these effects were qualified by a Distance × Data Set × Image Type interaction, F(12,
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384) = 14.44, MSE = 0.116, p < .001. Overall, the main finding is that for all image types
interest point selections were closer together than what was predicted by the shuffled data
set.

Our third method of examining interest point clustering was to find the fraction of interest
points that fall within a cluster. An interest point was defined to be part of a cluster if 35 or
more interest points were within 50 pixels of the location of that selection. The exact choice
of these parameters is not critical, while these are the values chosen in the final analysis,
similar patterns of results were found when different criteria were used for the required
number of interest points to form a cluster, as well as the maximum distance of a cluster.
The actual and shuffled data sets were created in similar ways as the previous analysis. In
the actual data set, interest points from the same image were examined. In the shuffled data
set, each interest point in one image was compared to the interest points from another image.

Figure 6 shows the fraction of interest point selections that fell within a cluster for each
image type. An ANOVA with data set (actual, shuffled) as a within-subjects factor and
image type as a between-subjects factor revealed a main effect of data type, F(1, 96) =
1044.88, MSE = 101.60, p < .001, showing more clustering in the actual versus shuffled data
set, a main effect of image type, F(3, 96) = 7.98, MSE = 114.97, p < .001, as well as a Data
Type × Image Type interaction, F(3, 96) = 8.65, MSE = 101.60, p < .001. Independent
samples t-tests showed that the interaction was based on there being more clustering in the
building t(48) = 2.35, SE = 4.07, p < .05, t(48) = 4.40, SE = 3.38, p < .001 and home interior
image t(48) = 3.29, SE = 3.92, p < .05, t(48) = 5.69, SE = 3.19, p < .001 types, compared to
the fractal and landscape image types, respectively. Buildings and home interiors did not
differ from each other, p > .10 nor did fractals and landscapes, p > .25. However, the main
finding is that for all image types a larger fraction of interest points were part of a cluster
than would be predicted by the shuffled data set.

The fourth method we used to test for clustering was a standard k-means cluster analysis,
which is designed to partition the data into a given number of clusters. To determine the
most appropriate number of clusters, we maximized the mean value of the silhouette
(Rousseeuw, 1987). A range of 2 to 15 clusters was examined per image, and an average of
5 repetitions per cluster value was used to smooth the data. The number of clusters for which
the mean silhouette value was highest was noted, and its corresponding mean silhouette
value was used as a goodness-of-fit measure. Then, to determine the level of clustering
expected by chance, 1000 matrices were created with 915 randomly defined (x, y) locations,
equal to the average number of interest points per actual image. The mean maximum
silhouette value for participants’ interest point selections for the 100 images was 0.587 (SD
= 0.061). The mean maximum silhouette value for the random distribution was 0.415 (SD =
0.005). For each image, the best mean silhouette value for participants’ data was above the
95th percentile of the random data, suggesting that for every image a greater degree of
clustering was observed than expected by chance. Furthermore, the number of clusters
corresponding to the maximum silhouette value was also different. For the selections made
by the participants, the average number of clusters which best fit the data was 10.92 (SD =
3.10), while for the random distribution it was 2.17 (SD = 0.55). Once again, these results
strongly suggest that the interest point selections were best described as clustering around
several independent locations. Next, we examined whether clustering differed as a function
of image type. A one-way ANOVA on the silhouette values was significant, F(3, 96) = 7.91,
MSE = 0.003, p < .001. Pairwise comparisons revealed that the difference was caused by
smaller values for the landscapes compared to buildings t(48) = 2.18, SE = 0.84, p < .05 and
home interiors t(48) = 1.70, SE = 0.91, p < .1, consistent with the previous clustering results.
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In summary, our results provide strong and converging evidence that interest point
selections cluster heavily around a few areas in each image. Overall, this strongly suggests
that the selection of interest points is not idiosyncratic, and that participants agree on which
locations in scenes are interesting.

Comparing interest points and image saliency—Having determined that interest
points do cluster together, and the majority of interest points are part of clusters in every
image type, we examined whether the location of interest point selections are correlated with
image saliency, as determined by the saliency map model (Itti et al., 1998). Two methods
were used to quantify the relationship between saliency and interest points. The first, the
value comparison method, involved creating a saliency map and then identifying the values
of that map at the locations of interest points. The second method, the cross-correlation
comparison method, involved calculating the cross-correlation between the saliency maps
and the interest maps. The techniques for creating the two types of maps, and the results of
the two comparisons, are discussed below.

Value comparison: The first method of comparing saliency to interest points involved
determining whether regions of the scene that participants deemed to be interesting had
higher saliency values than would be expected by chance. To test this, we created a saliency
map (SM) for each image in the database, using the algorithm in Itti et al. (1998). The model
was run for each image individually, and the maps were normalized by dividing all values
by the maximum value of that map, and multiplying by 100, thus ensuring that the values for
each saliency map ranged between 0 and 100.

To determine if regions of high salience were selected as interesting, we extracted the value
of the SM at the location of participants’ interest point selections. Specifically, the (x, y)
coordinates of all interest point selections for each image were determined, and the saliency
values from that image’s SM were extracted separately for the five selections. These values
formed the actual distribution.

We used a similar technique to that of Parkhurst et al. (2002) to determine whether the
values in the actual distribution were higher than would be expected by chance. Specifically,
we compared the mean values for each selection number in the actual distribution to a
chance sampling distribution. As in the creation of the shuffled data for the determination of
interest point clustering (Interest point selections section), the chance sampling distribution
was created by using the interest point selections from all other images to extract the values
from each SM (Parkhurst & Niebur, 2003). For instance, the values of the random sampling
distribution for Image 1 were obtained by calculating the mean saliency values from Image
1’s SM using participants’ interest point selections from Images 2 to 100.

Finally, to determine whether the selected regions were higher in saliency than would be
expected by chance, we calculated the difference between the mean of the actual distribution
and the mean of the chance sampling distribution for each image, which, following
Parkhurst et al. (2002), we will refer to as the chance-adjusted saliency for interest
selections. If this value is positive, then participants selected areas of the image that were
higher in saliency than expected by chance; if this value is negative, then participants
selected areas that were lower in saliency than expected by chance.

The means of the actual and chance sampling distributions are plotted in Figure 8A. The
chance-adjusted saliency for interest selections is the difference between the distributions for
each selection number. To determine if participants selected regions of high saliency as
interesting above chance, five one-sample t-tests tested whether the chance adjusted-saliency
was greater than zero for the first five selections. All differences were significant, all p < .
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001, showing that for all selections participants selected areas higher in saliency than would
be expected by chance. Next, a repeated measures ANOVA was conducted with selection
number (1, 2, 3, 4, 5) as a within-subjects variable and image type as a between-subjects
variable. The only reliable effect was a main effect of selection number, F(4, 384) = 12.83,
MSE = 70.403, p < .001, as earlier selections showed a higher chance-adjusted saliency
value than later selections. Overall, these results show that participants do select salient
locations as being interesting more so than would be expected by chance, and that earlier
selections are more influenced by image saliency than later selections.

Cross-correlation of interest and saliency maps: The second method used to compare
interest point selections and image saliency involved calculating the cross-correlation value
between the saliency map (SM) and the interest map (IM) for each image. The latter was
computed, for each image, by convolving each interest point location with a Gaussian with a
standard deviation of 27 pixels, truncated for efficiency at 3 standard deviations (81 pixels).
As explained below (Experiment 2), this value represents the estimated spatial precision of
the eye tracker. It is also the value used for creation of the fixation maps, below. Next, the
total value of all points in the map were normalized so that the sum of all values for a given
map equaled unity, and the mean of all values subtracted (see Figure 7). We also expanded
the size of the saliency map to that of the interest maps to simplify the computation of the
correlations.

In order to obtain a simple expression for the correlation between the maps, the SM was
computed as discussed above but normalized and expanded, as for the IM.

Let us define the un-normalized cross-correlation between two maps P and Q, both of
dimension M, N, as

(1)

The normalized cross-correlation between the interest map IM and the saliency map SM is
then computed as the un-normalized correlation (setting P = IM and Q = SM in Equation 1)
divided by the square root of the product of the autocorrelations,

(2)

To determine the cross-correlation expected by chance, every SM was cross-correlated with
all other IMs and the actual cross-correlation was compared to the resulting distribution of
random values. Specifically, the 100 cross-correlation values between an IM and its
corresponding SM were compared to the 95th percentile value in the random cross-
correlation distribution, corresponding to the value expected by a p-value of .05. The mean
value of the actual distribution was 0.368 (SD = 0.141). Overall, 61 out of the 100
comparisons were above the random sampling distribution curve at the 95th percentile,
suggesting that over half of the cross-correlation values between the IMs and SMs are
greater than what would be expected by chance (see Figure 8B). If we assume sampling
from a Bernoulli process, with 61 out of 100 instances that had a probability of 0.05
(corresponding to 61 out of 100 images being above the 95th percentile), we would obtain
this result with a probability of 5 × 10−53
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Summary of results of Experiment 1—There are two important findings in
Experiment 1. The first is that there is a high degree of consistency between participants’
interest point selections. Specifically, we observed substantial clustering for interest point
selections, signifying that many participants found the same few areas to be the most
interesting regions in that image. This suggests that the selection of interest points is not
idiosyncratic and argues against the possibility that each participant adopted a unique
strategy for selecting interest points. Instead, participants base their selections on a particular
set of features of the image that are available to all of them. The high consistency of our
results also demonstrates the absence of extraneous variability in stimulus presentation and
the behavioral responses, in spite of the low degree of environmental control that our online
paradigm allows for.

For the complex natural scenes employed in the experiment, we hypothesized that
participants select interest points based on a combination of bottom–up and top–down
criteria. We demonstrate that bottom–up saliency does, indeed, play a significant role in
their selections by showing that predictions of a purely bottom–up model, the saliency map,
correlate significantly with the selections. To the extent that the saliency model is a predictor
of bottom–up attention, interest point selections are biased by bottom–up factors. Since
bottom–up saliency, as computed by the saliency map model, is common to all participants,
it contributes to the high degree of consistency between participants. It should be noted,
however, that while participants do select regions of high saliency as being interesting, the
correlation is far from perfect. This is to be expected since the participants’ task was to
select “interesting” regions which likely includes taking top–down factors into account, such
as regions of the scene, or individual objects in the case of home interiors or buildings, that
are semantically important. Overall, bottom–up factors alone can only account for part of the
strong consistency in the selection of interest points, suggesting that features of the image
other than saliency are contributing to the participants’ interest point selections.

In Experiment 2, we investigated the relationship between the interest point data from
Experiment 1 and eye movement data recorded from a different sample of participants, as
well as their relationship with bottom–up saliency measures.

Experiment 2
To further investigate the relationship between interesting regions and attention, in
Experiment 2 we monitored participants’ eye movements as they free-viewed the same set
of images used in Experiment 1. We had two main goals.

First, we wanted to confirm that participants would indeed preferentially fixate salient
regions of images used in our database. Previous studies have established a significant
though modest correlation between eye fixations and saliency (e.g., Parkhurst et al., 2002),
which we wanted to replicate with our images.

Second, we examined the correlation between fixations and interesting regions, specifically
whether interesting regions serve as effective predictors of participants’ eye movements.
Experiment 1 revealed a moderate correlation between saliency and interest point locations.
However, as discussed previously, the saliency model’s predictions are based solely on
bottom–up features, and it is likely that the selection of interest points involves some top–
down influences. Fixations during scene viewing tend to be idiosyncratic and influenced by
both bottom–up and top–down factors (see Henderson & Hollingworth, 1999, for a review).
Thus, we predicted that interesting regions might serve as an equal or even more robust
predictor of fixations.
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Method
Participants—All experimental methods were approved by the Institutional Review Board
of Iowa State University. Twenty-one Iowa State University undergraduates (12 male)
participated in the eye tracking task for course credit. All reported normal vision.

Apparatus—Eye movements were recorded by an ASL eye tracker (Model R-HS-P/T6
Remove High Speed Optics), with a sampling rate of 120 Hz. Images were displayed in full
color on a Samsung SyncMaster 910T LCD monitor, with a viewing area of 38 × 30 cm. A
chin rest was used to maintain a viewing distance of approximately 70 cm. A separate
monitor, which was only viewable by the experimenter, indicated the participants’
approximate fixation position.

Stimuli—Stimuli were identical to those used in Experiment 1, and each participant viewed
all 100 images in random order. The images were expanded to encompass the entire screen
(1024 × 768 pixels) and subtended approximately 30.4° × 24.2° of visual angle.

Procedure—Participants began by signing an informed consent document and were
instructed that their task would be to, “Look around the images as you naturally would.”
They were then seated with their chin in a chinrest. The experiment was divided into two
blocks of 50 images. Each block began and ended with a 9-point calibration sequence to
calibrate the eye tracker, where a verbal command was given for participants to fixate on
each number sequentially. Eye tracker error was determined by taking the mean distance
between the calibration points and participants’ fixation locations during the pre-experiment
and post-experiment calibrations for both blocks. The mean difference was approximately
27 pixels (approximately 0.8°).

A trial began with the presentation of the fixation cross at the center of the screen, which
participants were instructed to fixate until the image appeared. The experimenter initiated
each trial when the view of the secondary monitor indicated that the participant was indeed
fixating the cross. After a delay of approximately 1.5 seconds, a randomly selected picture
from any of the four categories was presented for 5 seconds. The central fixation cross then
reappeared to signal the beginning of the next trial. The experiment lasted approximately 35
minutes.

Eye fixations were defined by a combination of distance and time. Specifically, eye
movements that traveled less than 1° in 25 ms, and were longer than 100 ms, were counted
as a single fixation. To improve the statistical estimates of the eye tracking data, we
identified trials where a failure in eye tracking occurred by summing the total time of all
fixations for each trial and removing those trials that had a total fixation time less than three
standard deviations below the mean trial time (4.23 seconds), which resulted in the rejection
of 8.4% of trials. Overall, the mean fixation duration was 290 ms (SD = 21), and there were
a mean of 12.89 (SD = 3.11) fixations per trial.

Results and discussion
Comparing image saliency and fixations—The same methods for comparing the
relationship between saliency and interest point selections employed in Experiment 1, value
comparison and cross-correlation, were used to compare the relationship between saliency
and fixations.

Value comparison: To determine whether participants fixated salient regions above chance,
we calculated the value of the SMs at the (x, y) coordinates of the participants’ first 10
fixation locations. These values formed the actual distribution. The SMs were identical to
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the ones used in Experiment 1. The chance sampling distribution was also created in the
same way as Experiment 1. That is, the values of the SM for each image were extracted
from the fixation locations from all other images. Finally, to determine whether participants
fixated more salient regions than would be expected by chance, we calculated the difference
between the mean of the actual distribution and the mean of the chance sampling
distribution for each image, the chance-adjusted saliency for fixation locations.

The means of the actual and chance sampling distributions are plotted in Figure 9A. To
determine if participants fixated regions of high saliency above chance, 10 one-sample t-
tests tested whether the chance adjusted saliency was greater than zero for the first 10
fixations. All differences were significant, all p < .001, showing that for the first 10 fixations
participants fixate areas higher in saliency than would be expect by chance. Next, a repeated
measures ANOVA was conducted with fixation number (1–10) as a within-subjects variable
and image type as a between-subjects variable. The only reliable effect was a main effect of
fixation number, F(4, 384) = 3.50, MSE = 25.783, p < .001, as the first fixation had a lower
chance-adjusted salience value than all other fixations. The main effect of image type did
approach significance, F(3, 96) = 2.62, MSE = 293.246, p = .055, and pairwise comparisons
showed that the chance adjusted saliency value was smaller for home interiors compared to
buildings and fractals. Overall, our results show that for our image set participants do fixate
regions of high saliency above chance.

Cross-correlation of saliency and fixation maps: Next, we computed the cross-correlation
between the SMs, which were identical to those used in Experiment 1, and fixation maps
(FMs). FMs for each image were created in a similar way to the IMs in the Comparing
interest points and image saliency section. Specifically, a Gaussian distribution with a
standard deviation of 27 pixels (estimated eye tracker precision), truncated at 81 pixels (3
SD), was placed around each fixation location. Instead of the fixed weight used for interest
maps, for the computation of fixation maps the Gaussian was weighted proportionally to the
length of that fixation. Thus, longer fixations received a higher total value in the FM than
shorter fixations. Then, the total values of each map were normalized so that the sum of all
values for a given map equaled unity, and the overall mean subtracted.

The actual and random cross-correlation distributions were created in the same way as in
Experiment 1, and the computations were identical to those performed there. The mean
value of the actual distribution was 0.327 (SD = 0.145). Overall, 33 out of the 100 actual
comparisons were above the random cross-correlation distribution curve at the 95th
percentile, suggesting that about one third of the cross-correlation values between fixation
and saliency maps were higher than expected by chance (see Figure 9B). The probability of
obtaining this result by chance, again computed from the binomial distribution as in the
Comparing interest points and image saliency section, is 1 × 10−18.

Comparing fixations and interest points—The same two techniques as before were
used to compare the relationship between fixations and interest point selections.

Value comparison: The interest maps were constructed as in the Comparing interest points
and image saliency section and the statistical tests constructed as in the Comparing image
saliency and fixations section, changing “saliency” to “interest” and “saliency map” to
“interest map.”

The means of the actual and chance sampling distributions are plotted in Figure 10A. To
determine if participants fixated regions of high interest above chance, 10 one-sample t-tests
tested whether the chance adjusted-interest value was greater than zero for the first 10
fixations. All differences were significant, all p < .001, showing that for the first 10 fixations
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participants fixate areas higher in interest value than would be expected by chance. Next, a
repeated measures ANOVA was conducted with fixation number (1–10) as a within-subjects
variable and image type as a between-subjects variable. A main effect of fixation number
was found, F(4, 864) = 11.22, MSE = 48.295, p < .001, as interest values were higher for
fixations after the first. The main effect of image type was marginally significant, F(3, 96) =
2.18, MSE = 296.770, p = .095. The Fixation Number × Image Type interaction was also
significant, F(27, 864) = 2.00, MSE = 48.295, p < .01. This interaction could be understood
by comparing the interest values for the first and second fixations for fractals to all other
image types. For fractals, the chance adjusted interest value for the first two fixations was
not significantly different (paired samples t-test, t(24) = 0.294, SE = 2.25, p = .771). For the
other three image types, the chance adjusted interest value was significantly higher for the
second compared to the first fixation, all p < .01. Overall, these results show that participants
in Experiment 2 were likely to fixate image regions that participants in Experiment 1 found
interesting.

Cross-correlation of interest and fixation maps: The cross-correlation between the IMs
and FMs was computed, in the same way as described previously. As was done for the SM
in the Comparing interest points and image saliency section, the size of the IM was
expanded to be the same as that of the FM to simplify the computation of the correlations.
The mean value of the actual distribution was 0.656 (SD = 0.113). Overall, 98 out of the 100
actual cross-correlations were larger than the value at the 95th percentile of the random
sampling distribution (see Figure 10B), suggesting that practically all of the images had a
higher cross-correlation between their corresponding interest and fixation maps than would
be predicted by chance. The probability of obtaining this result by chance as computed from
the binomial distribution, as in the Comparing interest points and image saliency section, is
1 × 10−124.

Summary of results of Experiment 2—The first set of results in Experiment 2 largely
replicated previous findings (Parkhurst et al., 2002), which revealed a moderate correlation
between fixations and image saliency. Parkhurst et al. (2002) found that for the average over
all image categories (results for individual categories were not provided), it was the first
fixation that carried the highest saliency value (see their Figure 5). In Experiment 2, we
likewise find that the chance-adjusted saliency (the difference between the red and blue
symbols in Figure 9A) when averaged over all four image categories is higher at the first
fixation than at the second (t(99) = 3.07, SE = 0.63, p < .01). A closer look at each image
category separately reveals that this holds also individually for the three natural image types
(landscapes, interiors, buildings; t-test, all p < .05) though not for fractals. Note that this is
not the case for the raw (non-adjusted) saliency values which were found to be not
significantly different between first and second fixations, a result that holds for each of the
image categories separately as well as when they are collapsed (t-tests, all p > .15).
Furthermore, in both studies the chance-adjusted saliency for fractals is found to be greater
for the first fixation than for natural scenes (collapsed over the three classes of natural
scenes, t(98) = 2.14, SE = 1.51, p < .05). This is consistent with an interpretation in which
the top-down effects gain in importance as additional information from previous fixations is
processed, and also with the intuitively plausible assumption that top–down effects play a
greater role in the semantically “meaningful” natural scenes (landscapes, buildings,
interiors) than in fractals. Therefore, the purely bottom–up saliency map model performs
better on earlier than later fixations, and better on fractals than on natural scenes.

The situation is more complex for the relationship between conscious selection of interesting
points and eye movements. For fractals, the chance adjusted interest value decreases
monotonically with fixation number (Figure 10), as was the case for salience. For natural
scenes (Buildings, Interiors and Landscapes) that presumably have more “semantic”
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contents than fractals, we find that the chance adjusted interest value is lower at the first
fixation than at the second (see the Comparing fixations and interest points section), and it is
monotonically decreasing for the following fixations, as expected. One possible explanation
is that semantically controlled top–down influences require more information about image
contents than is the case for fractals and more than can be acquired without at least one
fixation. Therefore, some of this information is acquired during the first fixation and it is
only at the second fixation that the center of gaze is on the most “interesting” location.
Although the time scales of eye movements and interest point selections differ by an order
of magnitude, this interpretation is at least consistent with the observation that the selection
of the first interest point takes significantly longer than that of the second (Figure 2),
implying that some amount of time is needed to analyze the image for interesting locations.
Furthermore, the short time for the first fixation of fractals is reflected in the fact that the
first interest point selection is selected fastest for this image type (3.75 vs. 3.97 seconds for
landscapes, 4.33 seconds for interiors, and 4.37 seconds for buildings). We note that a
similar pattern, with the highest saliency encountered at the second fixation, was found by
Foulsham and Underwood (2008) while participants scanned natural scenes of a similar
nature as our buildings, interiors, and landscapes (they did not use fractals) with the goal of
memorizing the images. We also acknowledge, however, that the true first fixation a
participant makes after the image appears can be difficult to identify. In most experimental
paradigms, including ours and that of Foulsham and Underwood, the trial starts by the
participant fixating a marker in the center of the screen. The first fixation away from this
default position is frequently quite small (possibly because of the center bias) and whether a
particular eye movement is classified as a fixation depends then somewhat sensitively on the
parameters of the fixation–detection algorithm. If the algorithm misclassifies a fraction of
the first fixations (e.g., by including a small drift of the eye among the fixations), these will
on average fall on a part of the image that has low saliency, and these misclassified fixations
will then lower the mean saliency of the whole set of first fixations. Of course, such a
misclassification will also contribute to the central bias and this may contribute to the central
bias of the fixation map (Figure 4, right), which is much stronger than that of the interest
map (Figure 4, left).

But independent of these variations, one result of crucial importance remains that even after
many fixations and for all scene types considered, bottom–up saliency influences eye
movements: In both studies, saliency values are significantly above chance levels not only
for the first but for all fixations for the duration of the experiment (5 seconds).

A novel finding is that there is a strong correlation between subjectively defined interest
point locations and fixations. Specifically, participants in Experiment 2 tended to fixate the
same regions of the scene that participants in Experiment 1 found interesting. To the extent
that eye movements are influenced by bottom–up and top–down attentional factors, it seems
reasonable to suggest that interest points are thus influenced by both types of factors as well.

General discussion
Among internal (mental) states, selective attention has been recognized as being particularly
amenable for objective study nearly a century and a half ago (von Helmholtz, 1867).
Psychophysical experimentation has led to a thorough quantitative characterization of
attentional selection and a number of psychological models. More recently, models of the
neural basis of selective attention were developed. Of particular importance is the saliency
map concept introduced by Koch and Ullman (1985). Rather than attacking head-on the
extremely complex general problem of selective attention, which is so central to perception
and cognition that solving it in its entirely would probably involve understanding most of an
individual’s mental life, these authors decided to focus on the “low-hanging fruit”-type
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question of bottom–up attention. Not only does this have the practical advantage of being
amenable to experimental study much more directly than top–down attention (since it can,
by definition, be manipulated by instantaneous sensory input), it also avoids the
complexities of influences by personal history (long-term memory) and of other mental
states (e.g., goals) which are in general difficult to measure and to quantify. Furthermore, the
concept of a saliency map can be implemented in algorithmic form (Itti et al., 1998; Niebur
& Koch, 1996), which makes it immediately amenable to quantitative hypothesis testing
(and has the additional benefit of making it useful for technical and practical applications).

Previous experimental tests of predictions of the saliency map model of covert attention
have used overt attention, i.e., eye movements (e.g., Parkhurst et al., 2002), demonstrating
that bottom–up scene-contents influences attentional selection. In the present work, we go
one step further away from the sensory periphery and investigate whether the purely
bottom–up predictions of the saliency map model have predictive value even for consciously
made decisions about what constitutes an “interesting” area of an image. Given the high-
level of abstraction of this concept (whose precise definition is deliberately left to the
individual human observers), it was expected that inter-individual differences will be
substantial. We therefore developed a novel, Internet-based approach that allowed us to use
a very large population of observers (Experiment 1). Together with results from a more
traditional study of eye-movements (Experiment 2) on the same image set, we can
constructs maps for bottom–up saliency (SM), fixations (FM), and conscious selection of
interest (IM). For the sake of illustration, we show one example image together with all
these three maps derived from this image (Figure 11). Our major results, to be discussed
below, are the relationships between these three maps, and the quantitative determination of
the inter-individual differences between points selected as interesting.

Limited inter-individual differences in selection of interest points
In our first experiment, we addressed the question of which points in complex images
(natural scenes and fractals) human observers consider “interesting,” using their own
interpretation of this term. Although observers have been questioned about features or
objects they find of interest (e.g., Rensink et al., 1997, also see the discussion in the Interest
section and Correlating attention, eye movements, and interest), we believe that,
surprisingly, the very simple task of prioritizing which points in a complex visual scene
observers consider the most interesting using their own criteria has never been addressed in
a systematic and quantitative way. Before performing the experiment, one might have
expected that different observers would make vastly different choices in what they consider
personally interesting. One might have argued that different human observers are
sufficiently different from each other and that, therefore, there should be little agreement
between their conscious determination of what is “interesting.” Furthermore, any source of
random variations, both within observers and within the experimental setup which by its
nature is much less closely controlled than traditional psychophysical experimental
paradigms will add to the variability between the recorded choices the observers make.

Our results show that the selection of interest points was very consistent across participants.
Figure 6 shows the remarkable result that for each of our four image classes, more than half
of all selected locations clustered in areas that comprise only a very small fraction of the
image. We consider this a truly surprising result. The complexity of human behavior, in
combination with an experimental setting with a large number of uncontrolled variables,
could have resulted in a very “noisy” distribution of interest points. Instead, we found a
highly structured pattern of selections that tended to cluster around a few regions in each
image. We can safely conclude that selection of interest points is not idiosyncratic but
reflects something inherently significant about certain areas of scenes. This is even more
remarkable considering the differences in viewing angle, monitor quality, and other
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uncontrolled factors that could have lead to vastly different responses between participants
who responded on their personal computers via the Internet. These factors are nearly certain
to have added variability and “noise” to the data so that the true degree of agreement
between observers is likely even higher than what we measured. Significant consistency
between observers was also found in a recent study (Cerf, Cleary, Peters, Einhäuser, &
Koch, 2007) where observers rated the saliency of a whole image relative to other images of
the same category (rather than parts of a image relative to other parts of the same image, as
in the present study). Significant inter-observer consistency was also observed when the
same image set was tested again a year later when participants reported not having explicit
memory of the specific images they saw. These results support our hypothesis that it is
objective criteria, rather than idiosyncratic decisions, that determine what people find
subjectively interesting.

Relation between bottom–up saliency, eye movements and subjective interest
The high consistency we found between choices of interesting points is not only an
important finding by itself but it also allows us to constructs meaningful maps of interest
attributed to different areas of an image. The question then arises naturally how the
subjective interest thus determined is correlated with eye movements on the one hand, and
with bottom–up saliency on the other hand. Between the three maps (IM, SM, and FM),
there are thus three comparisons to be made. We found statistically highly significant
correlations (all p < .001) for all these three relations (Figures 8, 9, and 10).

Thus, not only are subjective interest and eye movements correlated with each other (even in
different subjects), but both are furthermore correlated with salient regions as determined by
the saliency map model (Itti et al., 1998). This suggests that the selection of interest points is
biased by bottom–up factors, and that interest points can serve as a useful indicator of
bottom–up attention. We note in passing that these results cannot be explained by a
correlation between some generic correlations between the members of our image set. Such
correlations do indeed exist, as is shown by the fact that the mean correlation between
shuffled selections is positive (the averages of the blue curves in Figures 8B, 9B, and 10B
are all positive), but the correlations are significantly stronger than can be explained by this
effect (red dots).

As expected, the correlation was not as strong as one would expect if interest points were
determined solely by saliency. While it is certainly possible that other models of bottom–up
attention may show stronger correlations with interesting locations, we believe it is more
likely that other factors besides saliency were involved in the selection of interesting
regions. It is likely that top–down information plays a role in the selection of interesting
locations. This would explain why the saliency model, which is based on solely bottom–up
information, is only moderately correlated with interesting regions. This is supported by our
result showing that interest point selections from Experiment 1 were a very robust predictor
of participants’ eye fixations in Experiment 2. In other words, participants fixate interesting
locations (even though our criterion of “interesting” is that they were found interesting by
other individuals).

Previous research suggests that fixations are influenced by top–down and bottom–up factors
(Henderson & Hollingworth, 1999), which could explain why interest points tend to
correlate better with fixations than saliency. Fixations are also correlated (though
imperfectly) with detected changes in change-detection paradigms (O’Regan, Deubel, Clark,
& Rensink, 2000), and these changes are on their turn correlated with subjectively perceived
salience (Wright, 2005). Perceived salience is most likely a combination of bottom–up and
top–down contributions (Wright, 2005). Thus, interest points (and fixation points) seem to
reflect the combination of bottom–up and top–down attention.
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The question of the relative contributions of bottom–up and top–down influences was also
addressed in two independent recent studies (Foulsham, Barton, Kingstone, Dewhurst, &
Underwood, 2009; Mannan, Kennard, & Husain, 2009) that recorded eye movements of
agnosia patients while they either free-viewed natural scenes (Mannan et al., 2009) or
performed a search task in them (Foulsham et al., 2009). Visual agnosia patients have severe
problems recognizing objects and understanding global scene properties and it is believed
that they are impaired in applying top–down guidance when confronted with a visual scene
because they are unable to link visual input with top–down knowledge. As a result, it was
expected that their eye movements should conform more closely with the predictions of the
saliency map model since top–down influences found in healthy observers, which
necessarily degrade the model’s performance, would be absent. Indeed, this was found in
both studies. Notably, while normal observers performing the search task in the Foulsham et
al. (2009) study were able to override low-level saliency effects (as discussed previously),
this was not the case for the general agnosia patient studied who was apparently unable to
use top–down guidance and relied on strategies dictated by bottom–up information. Fixation
patterns in the agnosia patient were therefore significantly better predicted by the saliency
map model (Itti et al., 1998) than for normal observers. A notable result of the Mannan et al.
(2009) study is that the first few eye movements of their agnosia patients were
indistinguishable from those made by the healthy observers and well-predicted by the
saliency map model. It was only later that the fixation patterns of normal observers deviated
from those of the agnosia patients (and the saliency map model), presumably because of
top–down influences in the control group that were not available to the patients.

Related to top–down influences is the possibility that participants are selecting objects,
rather than locations, as interesting. In a study that is complementary to ours, Elazary and
Itti (2008) did not give observers an explicit instruction to search for “interesting” locations
(our approach) but instead assumed that observers who were asked to label “objects” in a
natural scene would predominantly do so for objects that they found “interesting.” Using a
large existing database of labeled images (available at http://labelme.csail.mit.edu), they find
that low-level saliency, as computed from the Itti et al. (1998) model, is a highly significant
predictor of which objects humans chose to label. The saliency map model finds a labeled
object 76% of the time within the first three predicted locations. An anecdotal review of our
results, with interest points plotted on top of each image, confirms that selections tend to
cluster on and around objects, or complex structures in the case of fractals and natural
scenes (e.g., Figure 3).

As has been theorized (e.g., Rensink, 2000a, 2000b; Treisman & Gelade, 1980), the
formation of a stable object representation requires attention. However, information that is
important for object processing, such as figure–ground segmentation (Driver & Baylis,
1996) or invariant features (Lowe, 2004), is not accounted for by the saliency model. This
information is not top–down, per se, in the sense that the information is part of the image
and does not reflect an idiosyncratic preference or task goal. For instance, the features of a
car in an image would be the same whether or not the person is searching for a car, but these
features are part of the image itself and could be pre-selected to aid in the detection of that
object if that was the observer’s goal. Thus, attention in natural scenes, as measured by
interest point selections, may be guided by an intermediate stage between bottom–up and
top–down information, which is important for the formation of stable object representations.
Furthermore, recent physiological results show that figure–ground segregation does not
depend on selective attention (Qiu, Sugihara, & von der Heydt, 2007). A theoretical model
for a neural substrate of this and other mechanisms of intermediate vision has been
suggested recently in a computational model (Craft, Schütze, Niebur, & von der Heydt,
2007).
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Conclusions
The selection of interest points appears to be quite consistent across subjects, highly
correlated with fixations, and influenced by both bottom–up and top–down attentional
factors. More work is required to elucidate the relationship between interesting locations and
semantically important objects in scenes. Interest points could also serve as a useful step for
computationally modeling top–down influences on attention.
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Figure 1.
One example of each image from the four categories: A) buildings, B) fractals, C) home
interiors, and D) landscapes.
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Figure 2.
Mean reaction time to make interest point selections. Error bars represented plus and minus
one standard error.
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Figure 3.
Two example images from each image category demonstrating the clustering of interest
points. First selections are shown as red dots, selections two to five as blue dots.
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Figure 4.
Grand average (over all images) of interest point selections (left) and fixations (right). The
strong central bias is discussed in the Summary of results of Experiment 2.
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Figure 5.
Clustering of interest points determined by the percent of interest point selections a given
distance (pixels) away from each other interest point for the four image categories. Error
bars represent plus and minus one standard error.
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Figure 6.
Clustering of interest points determined by the percent of interest points that fell within an
interest cluster for the four image categories. Error bars represent plus and minus one
standard error.
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Figure 7.
Creation of interest maps. (A) Original image with interest points plotted on top. Color
coding as in Figure 3. (B) Interest selections with Gaussian intensity “blobs” centered on
each interest point and superposed. Values have been normalized such that the sum of all
values equals unity, and the overall mean has been subtracted.
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Figure 8.
(A) Mean saliency values at different interest point locations for the four image types and
the actual and chance sampling distributions. Error bars represent plus and minus one
standard error. Note that the distance between the actual and chance sampling distributions
represents the chance-adjusted saliency value. (B) Cross-correlation between interest maps
and saliency maps. Values from the random cross-correlation distribution are sorted from
weakest to strongest and from negative to positive correlations. The mean value of the actual
distribution is plotted in green.
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Figure 9.
(A) Mean saliency values at different fixation locations for the four image types and the
actual and chance sampling distributions. Error bars represent plus and minus one standard
error. Note that the distance between the actual and chance sampling distributions represents
the chance-adjusted saliency value. (B) Cross-correlation between fixation maps and
saliency maps. Values from the random cross-correlation distribution are sorted from
weakest to strongest and from negative to positive correlations. The mean value of the actual
distribution is plotted in green.
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Figure 10.
(A) Mean interest values at different fixation locations for the four image types and the
actual and chance sampling distributions. Error bars represent plus and minus one standard
error. Note that the distance between the actual and chance sampling distributions represents
the chance-adjusted interest value. (B) Cross-correlation between fixation maps and interest
maps. Values from the random cross-correlation distribution are sorted from weakest to
strongest and from negative to positive correlations. The mean value of the actual
distribution is plotted in green.
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Figure 11.
Example image (A) with associated interest map (B), fixation map (C), and saliency map
(D).
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