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Abstract

For simulations of neural networks, there is a trade-off between the size of the network that can be
simulated and the complexity of the model used for individual neurons. In this study, we describe a
generalization of the leaky integrate-and-fire model that produces a wide variety of spiking behaviors
while still being analytically solvable between firings. For different parameter values, the model
produces spiking or bursting, tonic, phasic or adapting responses, depolarizing or hyperpolarizing
after potentials and so forth. The model consists of a diagonalizable set of linear differential equations
describing the time evolution of membrane potential, a variable threshold, and an arbitrary number
of firing-induced currents. Each of these variables is modified by an update rule when the potential
reaches threshold. The variables used are intuitive and have biological significance. The model’s
rich behavior does not come from the differential equations, which are linear, but rather from complex
update rules. This single-neuron model can be implemented using algorithms similar to the standard
integrate-and-fire model. It is a natural match with event-driven algorithms for which the firing times

are obtained as a solution of a polynomial equation.

1 Introduction

The leaky integrate-and-fire model for neurons is often used to model spiking neuronal
networks as it captures some fundamental properties of neurons (integration, spikes), the model
parameters are intuitive, and it can be implemented easily and efficiently in simulations.
However, there are many properties of biological neurons that this model does not reproduce.
Many generalizations of the integrate-and-fire model have been proposed (for a review, see
Izhikevich, 2004). Like the original integrate-and-fire model, these generalizations are hybrid
systems that consist of a set of ordinary differential equations together with a set of update
rules. A well-known example (Izhikevich, 2003) increases the complexity of the differential
equations, which, by generating several types of bifurcations, results in a model that reproduces
a large number of observed spiking patterns. However, the introduction of these features comes
at a cost: it is computationally more expensive to implement in clock-driven simulators than
the standard integrate-and-fire model, and it is not easily integrated in event-driven simulators.

Event-driven algorithms (e.g., Mattia & Giudice, 2000) provide an efficient way to simulate
spiking neuronal networks exactly (without approximation) if the state variables of a neuron
can be computed from an arbitrary time in the past in the absence of events. Previous models
have generally used integrate-and-fire neurons, since the time dependence of the state variable
is analytically solvable. Once state variables are propagated, the solutions are used to compute
the time of the next spike (event). This solution for event times depends on the model for
synapses. Recently, Brette (2007) showed that for integrate-and-fire neurons with current
synapses, the event times can be obtained from the solutions of a polynomial equation. It is
possible to implement more complex neuronal models with event-driven algorithms using a
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lookup table (Ros, Carrillo, Ortigosa, Barbour, & Agis, 2006), but this requires interpolation
and comes at the cost of losing precision. It has also recently been proven that some nonlinear
integrate-and-fire models have analytical solutions for the time dependence of the state
variables (Tonnelier, Belmabrouk, & Martinez, 2007). However, these solutions apply only to
quadratic or exponential integrate-and-fire neurons, and when synapses with exponentially
decaying currents are used, only one timescale is used. The quadratic integrate-and-fire model
provides some additional features to a linear integrate-and-fire model: spike latency, bistability,
and threshold variability. However, it lacks many other features that are desirable for realistic
simulations (Izhikevich, 2004).

In order to model adaptation, a method frequently used is to add voltage-dependent currents
(for a review, see Burkitt, 2006). While this is is an accurate representation of the biological
system, it usually prevents diagonalization (over reals) of the system of differential equations.
Another option is to consider that the threshold depends on the time of the previous spike only
(Jolivet, Lewis, & Gerstner, 2004). While being analytically tractable in the formalism of a
spike response model, this form of threshold adaptation lacks the rich phenomenology resulting
from accommodation to subthreshold stimuli.

To include the effects of adaptation, we use a voltage-dependent threshold (Hill, 1936) in our
model. This can be viewed as applying the effects of voltage-dependent currents to the
threshold rather than to the voltage. Dodla, Svirskis, and Rinzel (2006) have shown recently
that a voltage-dependent threshold produces postinhibitory facilitation. We here demonstrate
that models of this class allow a much richer phenomenology: in addition to adaptation, the
voltage-dependent threshold produces accommodation, threshold variability, rebound spikes,
tonic and phasic spiking, and other features of biological neurons. Perhaps more surprising, in
a different regime of parameters, it can also produce hyperpolarization-induced activity or
threshold latency.

To model afterpotentials, we rely on spike-induced currents (Hille, 1992). Burstiness is
obtained as a consequence of depolarizing afterpotentials. It can be combined with the
adaptation. Resonating (intrinsically oscillating) neurons are traditionally modeled based on
subthreshold oscillations. Our model does not include subthreshold oscillations; however,
neurons with a preferred frequency can be obtained by combining excitatory and inhibitory
spike-induced currents.

In this study we introduce a model based on a diagonalizable set of linear differential equations,
which produces a large repertoire of firing patterns. Since the solution of the system of
differential equations is a sum of exponentials, it can be simulated using the same tools used
for the leaky integrate-and-fire model. The complex firing patterns obtained from the model
are a result of suitably chosen boundary conditions and update rules.

2 Model Definition

The state of the neuron is described by a set of variables: membrane voltage V, instantaneous
threshold @, and an arbitrary number of internal currents I;. The model consists of a linear
differential equation and an update rule for each variable. The coefficients of the differential
equations form a triangular matrix, which allows sequential solving of the set of equations.
Internal currents are exponentially decaying and do not depend on other variables, the evolution
of the membrane voltage depends on the internal currents, and the evolution of the
instantaneous threshold depends on the membrane voltage. In the presence of a constant
external current I, the time evolution of the state variables is
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The update rule, which applies if V(t) = ©(t), changes the values of the state variables. Any
update rule can be used as long as after the update, the membrane potential V(t) is smaller than
the instantaneous threshold potential O(t) (we refer to the set of state variables with V(t) < ©
(t) as the region of accepted values). The set of update rules we used is

Ij() « Rj X Ij(H+A;
V(i) « V,
O(1) « max(0,, 0(7)), (2.2)

where the parameters R;, Aj, Vy, and ©; can be chosen freely, subject only to the constraint
Oy > V. For the spike-induced currents, the choice of Rj = 0 leads to a constant update function
(the value of the current after the spike is independent of the value of the current before the
spike). For another choice, R;j =1, the update function is additive. For all examples shown in
this letter, we use at most two spike-induced currents (N < 2 in equation 2.1).

3 Model Solution

The system of ordinary differential equations, equation 2.1, has one stationary solution:

Ij.st:O
Vs,zE,,+{—§
ark,
O =0On+7¢- (3.1)

The Jacobian matrix for equation 2.1 has the eigenvalues —k;j, =G/C, —b. If kj, G/C, and b are
all positive, the stationary solution, equation 3.1, is a stable node. As we will see, this stationary
solution dominates the phase space of equation 2.1.

If the values for kj, G/C, and b are all distinct, the solution to equation 2.1, with initial conditions
1j (0) = ljo, V(0) = Vo, ©(0) = By, Is:

Ij(f)ZIjo X exp(—kjt)

. I; —k; I;
V(r):EL+Ié+§7’°ZXf£}_C")+exp(—Gt/C) (Vo -E, k- % Gf,jjc)

1, alj 1, I 1, I
®(t):®w+IZ_G+§WJ)(()b—kj)exp(_kjr)+ﬁ (V() - EL -G~ %:G—j/:')jC) exp(—Gr/C)+ (@0 -0y — ﬁ (V() - EL el %‘4#—()/(]))) e

(3.2)
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How can this simple, linear, diagonalizable system of ordinary differential equations reproduce
a wide variety of complex neuronal behaviors? The answer relies on the restrictions applied
on the variable values (the membrane potential has to be below threshold) and on the update
rules (if the membrane potential reaches the threshold, the state variables are changed according
to equation 2.2).

If the stationary solution, equation 3.1, is outside the region of accepted values, that is, if

Vii>0y,

the model will produce a tonic response. The sufficient condition for a tonic response is

%(1 - 2)>®L,Q—EL.

b (3.3)

If a < b, the neuron has a tonic response to an excitatory current:

1>G(®w — E,)/ (1 N g)

If a > b, the neuron has a tonic response to an inhibitory current:

I< - GO — EL)/(% - 1).

If the stationary solution is inside the region of accepted values, the neuron is responsive (there
are initial conditions for which the neuron will fire) if on the line Vg = O, there are points for
which the vector describing the evolution of the system points outward the region of accepted
values (toward Vg > Og). For any point on the line Vg = Og;, the normal vector (pointing

outward) is 77 = {0, 2 0,1/V2,-1/ ‘/5} The condition for the neuron to be responsive is: there
exist V, 1j such that

I+ Y 1j= bC(O — E,) = C(a = b+G[C)(V - E,)>0. 0

Ifa—b+G/C+0, there are values for V for which condition equation 3.4 is satisfied irrespective
of the values for I;. Therefore, if the stationary solution is inside the region of accepted values,
depending on the initial conditions and on the update rules, the neuron can respond in a phasic
or tonic fashion or not respond at all.

Brette (2007) has pointed out that since the equation V(t) = @(t) is a sum of exponentials in t,
it can be reduced to a polynomial equation. Consider kj, G/C, and b to be rational numbers and
k € @ their greatest common divisor such that n; = kj/k, ng = G/(Ck), np = b/k, which defines
nj, Ng, and ng, all € NL. With the transformation x = exp(—kt), the time of the next spike is
obtained by numerically solving the equation D(x) = 0, where
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4 Model Phenomenology

The leaky integrate-and-fire neuronal model produces tonic spiking in response to a
depolarizing external current (see Figure 1A, the values of the parameters and external currents
for all simulations are summarized in Table 1). With currents infinitesimally above threshold,
the model neurons fire with an infinitesimal firing rate, as shown in Figure 1B. With an increase
in input, the output of the model monotonically increases. A neuron with a continuous input-
output curve is classified as class 1 excitable (Hodgkin, 1948). This is a result of the stationary
solution for the membrane potential being near the fixed threshold. To reach the threshold, the
system has to go through points that have infinitesimal time derivatives for the membrane
potential.

If the coefficient a, which describes the dependence of the threshold on the membrane potential,
is between 0 and b, several types of adaptive behaviors are obtained. If the external current is
sufficiently large to satisfy equation 3.3, the neuron produces a tonic response with spike-
frequency adaptation (see Figure 1C). For a smaller current, the neuron can produce phasic
spiking. This simulation is presented both as a time evolution, Figure 1D, and in phase space,
Figure 2A. There is a range of currents just below what is needed to satisfy equation 3.3 for
which the neuronal response can be bistable (see Figure 1J). The neuron can respond tonically,
or not respond at all, depending on initial conditions. A jump in the external current, divided
by the neuron’s capacitance, to 1.5 V/s and then 1.7 V/s results in a tonic response. However,
adaptation for 0.1 s at 1.5 V/s is sufficient to prevent any response to a subsequent 1.7 V/s
input.

If the current is the minimum needed to satisfy equation 3.3, the points corresponding to
equation 3.1 and equation 3.4 coincide. Depending on the parameter chosen for @y, the neuron
can produce either a Class 1 or a Class 2 response. A Class 2 response is characterized by
having a nonzero firing rate at the threshold (as shown in Figure 1H). If the update rule for the
stationary solution is applied, the simulation leads back to the stationary solution before
crossing the boundary, the neuron is Class 1.

A value for the coefficient a between 0 and b leads to accommodation: a sudden shift in the
external current produces spikes, while a gradual rise to the same external current value does
not (see Figure 1E). If, in addition, the recovery of the membrane potential is faster than the
recovery of the threshold (G/C > b), it also leads to threshold variability: a subthreshold
stimulation can produce a response if it follows a hyperpolarization (see Figure 1F). A more
extreme version of threshold variability, in which a response is obtained in the absence of
stimulation following hyperpolarization, can be obtained as well, as shown in Figure 1G. This
model retains the integrative property of the leaky integrate-and-fire neuron (see Figure 11).
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A feature more difficult to reproduce is inhibition-induced firing (also called anode break). It
characterizes a neuron that fires when hyperpolarized. This behavior can be obtained in our
model by considering the effect of the membrane potential on the threshold potential to be
larger than the rebound factor for the threshold potential, that is, a > b (see Figure 1K). For
hyperpolarization-induced spiking, both the membrane potential and the instantaneous
threshold potential are below resting potential. Thus, an update rule that would leave the
threshold potential unchanged and reset the membrane potential to resting value would lead to
a higher membrane potential than the threshold immediately following the update. One simple
solution to this problem is to impose a low bound on the update of the threshold potential as
in equation 2.2.

By modifying the parameters for the spike-induced currents, it is possible to produce
afterpotentials that can be either depolarizing or hyperpolarizing (see Figure 1Q). By choosing
ashort, large depolarizing afterpotential and a longer but weaker hyperpolarizing afterpotential,
bursting behavior is introduced (see Figure 1M). For a burst to stop, the update rule for the
hyperpolarizing spike-induced current cannot be constant. Therefore, we used constant
updating for i; and additive updating for io. If we keep the same parameters for the voltage
dependence of the threshold while adding the spike-induced currents, the external current that
previously produced tonic spiking produces tonic bursting, as seen in Figure 1M; the one that
produced phasic spiking produces phasic bursting (see Figure 1N); and that which resulted in
a rebound spike produces a rebound burst (see Figure 10). Using the parameters for threshold
adaptation, which result in an hyperpolarization-induced firing while adding the spike-induced
currents, results in hyperpolarization-induced bursting (see Figure 1L).

When the amplitude of the spike-induced currents is decreased, the neuron reaches a mixed
mode in which it initially bursts; however, it continues to respond tonically with single spikes
(see Figure 1P).

With a short-term depolarizing spike-induced current and a long-term hyperpolarizing spike-
induced current, tonic response without external input can be obtained if the hyperpolarizing
current is sufficiently small (see Figure 1R). As for bursting, we used a constant update rule
for the depolarizing current and an additive update rule for the hyperpolarizing current. A short
pulse that produces one or a few spikes generates transitions from the down state to the up
state. A similar or longer pulse, if it arrives during the up state, would cause an accumulation
of hyperpolarizing currents, resulting in a transition to the down state.

Integration is an essential feature of neurons and is well reproduced by the integrate-and-fire
neuronal model. However, there are neurons that preferentially respond to stimuli of a given
frequency, perhaps most prominently in the hair cells of the peripheral auditory system
(Crawford & Fettiplace, 1981; Fettiplace, 1987) but also in neocortex (Hutcheon & Puil,
1992). Such bandpass-like behavior has been suggested to be of use for processing frequency-
modulated spike trains and segregating information contained in their oscillatory components
from that represented by their mean firing rates (Niebur, Koch, & Rosin, 1993). To simulate
frequency-selective neurons, we consider a short hyperpolarizing spike-induced current that
will reduce responses at frequencies that are too high and a depolarizing spike-induced current
that will enhance the response at the correct frequency. In the preferred frequency panel
presented in Figure 1S, the frequencies lower than the preferred one are reduced by the
threshold adaptation caused by the afterpotential at the preferred frequency. A similar result
can be obtained by considering a third hyperpolarizing current with a longer timescale.

A feature that is relatively difficult to simulate using a linear model is spike latency: following
a brief depolarizing pulse, the neuron fires not during the pulse but after it. We simulate spike
latency in this model using negative threshold adaptation: with an increase in membrane
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potential, the threshold value decreases. The brief pulse will produce a depolarization, which
is not sufficient to cross the threshold initially. However, if, following the depolarization, the
threshold decreases faster than the membrane potential rebounds, it is possible to produce a
delayed spike, as shown in Figure 1T.

5 Discussion

Neurons have many degrees of freedom (e.g., voltages, ion concentrations, receptor states),
and one of the central tasks of computational modeling is to identify the variables essential for
understanding the behavior of the system under study. Among the point neuron models (those
not taking into account explicitly the morphological complexity of the neuron), the crudest
(e.g., McCulloch-Pitts, leaky and nonleaky integrate-and-fire) attempt to characterize the state
of a neuron by one variable, usually thought of as the transmembrane voltage. While this
approach has proven useful in many cases, the addition of one variable (as in the Fitzhugh-
Nagumo, Morris-Lecar, and Izhikevich models, for example) enormously increases the
behavioral space of the model.

Most of these models try to maximize the number of observed computational features that can
be captured while keeping the number of state variables small. This usually requires the
introduction of nonlinearities (Izhikevich, 2003; Brette & Gerstner, 2005; Touboul, 2008). In
the approach presented here, we instead expand the integrate-and-fire model by using a slightly
larger number of state variables but keeping the system of differential equations linear and
diagonalizable. Therefore it can be simulated with algorithms very similar to the leaky
integrate-and-fire model.

Treves (1993) modeled Ca?*-dependent opening of K* channels as spike-induced changes in
conductance and showed that this results in spike-frequency adaptation. While accurate in
predicting spike-frequency adaptation (Liu & Wang, 2001), the mechanism is nonlinear.
Another way to model spike-frequency adaptation is to consider a variable threshold (Holden,
1976; Tuckwell, 1978), with a threshold jump following a spike. To model spike-frequency
adaptation, we used an accommodating threshold. The voltage-dependent (accommodating)
threshold was introduced by Hill (1936) and used previously by Niebur and Koch (1994).
Dodla et al. (2006) have shown that a leaky integrate-and-fire model with accommodating
threshold shows postinhibitory facilitation and phasic spiking. In addition, we show that
neurons with voltage-dependent threshold can show hyperpolarization-induced spiking and
spike latency. We also show that since the equation for the threshold is linear and, together
with the equation for membrane potential the system of equations is diagonalizable over reals,
the time to the next spike can be obtained as a solution of a polynomial equation.

Another behavior requiring explanation is bursting activity. One biophysical mechanism
leading to bursting is Ca?* influx via the T-type voltage-gated calcium channels (Rinzel &
Lee, 1987; Smith, Cox, Sherman, & Rinzel, 2000). In our model, bursting is obtained using
spike-induced currents. To obtain a quantitative fit to the underlying biophysics, it is sufficient
to estimate the total current through T-type voltage-gated calcium channels following a spike
and the Ca%*-dependent currents it produces, and to fit these currents with an exponential decay.
The initial value and the decay time are then used as parameters for the spike-induced current
in the model presented in this article. Bursting may also be the result of persistent Na* currents
(Butera, Rinzel, & Smith, 1999), and the importance of this current for bursting in neocortical
networks in vitro has been shown by van Drongelen et al. (2006). The spike-induced currents
in our model are a natural implementation of the persistent Na* current.

Spiking-induced currents similar to those leading to bursting but smaller in magnitude lead to
a mixed mode. A relative refractory period can be introduced by adding a fast hyperpolarizing
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spike-induced current, like the fast afterhyperpolarizing voltage-gated K* current Iay p (Hille,
1992).

The phenomenology of our model is comparable to the widely used model introduced by
Izhikevich (2003). One limitation of the linear model when compared to the model by
Izhikevich (2003) is the incapacity to reproduce subthreshold oscillations. It is possible to
mimic the effect of subthreshold oscillations by using multimodal afterpotentials caused by
spike-induced currents. This gives the possibility of simulating neurons with preferred
frequencies. In this model, a preferred spiking frequency is obtained from a resonance with the
afterpotentials rather than from subthreshold oscillations.

An attractive property of our model is that features obtained from the voltage-dependent
threshold, like a rebound spike, are essentially independent of those resulting from the spike-
induced currents, like bursting. Thus, it is to some extent possible to combine these mechanisms
and generate more complex patterns. For instance, we can choose parameters for the voltage
dependence of the threshold that generates a rebound spike and combine them with parameters
for spike-induced currents that produce bursting, to obtain a neuron produceing a rebound
burst. We also note that sometimes the same behavioral feature can result from modifications
of different equations. For instance, spike-frequency adaptation can be obtained by adapting
the threshold or, alternatively, by considering a long-term hyperpolarizing spike-induced
current with additive updating.

This neuronal model can be implemented in network simulations using event-driven, grid-
based, as well as hybrid (Morrison, Straube, Plesser, & Diesmann, 2007) algorithms, if the
synapses are modeled as exponentially decaying currents. To characterize the time evolution,
the synaptic currents can simply be added to the list of spike-induced currents in equation 3.2.

It is possible to increase the complexity of the model further without modifying any of the
described algorithms by increasing the complexity of the update rules, equations 2.2. A simple
example is to introduce dependence of the spiking-induced currents on the membrane potential
before the firing in a conductance-like fashion. Since the impact of the complexity of the update
rules on the complexity of the simulation is very small, this is an easy place to start if additional
features need to be included in the simulation.
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Examples of neuronal responses reproduced by the model. The continuous line represents the
membrane potential V, the dashed line represents the threshold potential ©, the gray line
represents the external current 1./C, and the dots represent spiking events. The parameters for

these simulations are presented in Table 1.
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Figure 2.

Phase-space representation of phasic spiking (A) and phasic bursting (B). (A) In the phasic
spiking simulations, the spike-induced currents are zero, such that the phase space is two-
dimensional. This is the same simulation as that presented in Figure 1D. The black line
represents the trajectory of the system. The dashed line corresponds to V = @; the region of
accepted parameter values is to its left. The arrows point in the direction of evolution of a
system starting at the origin of the arrow. The black dots represent spiking events. The upper
gray point is the stationary solution of equation 3.1, and the lower represents the position at
which the component of the flow orthogonal to the boundary changes sign, equation 3.4. (B)
For the phasic bursting simulation, the phase space is four-dimensional. We present a three-
dimensional slice corresponding to the membrane potential and the two spike-induced currents.
This is the same simulation as presented in Figure 1N. Symbols as in A; arrows and the border
of the responsive region were omitted.

Neural Comput. Author manuscript; available in PMC 2010 October 13.

membrane potential (mV)



Page 12

Mihalas and Niebur

'T aInBi4 Jo sjauedqns ay} 0 S18)al

uwinjod 1s41 8y "papinoad SI SaIISUBIUI JO 1S1] B ‘SJUSLIND [BUIS]IXS 10 "UOITRINP J0 AJISUSIUI JUBJLIND [BUISIX3 Ul AJUO J3JJ1p ¥90]q B Ul SUOITRINWIS 3U) 3]IYM ‘Sislawresed Jualajyip Ylm SUOIIBINWIS JO SYJ0|q SPIAIP
Saul [eIUOZUOH "A90'0— = 4O pue ‘AL0'0~ = A 'ALO'0- =13 'T=Cd '0 = Td 'AS0'0— = @ '1_S0Z = ¢4 '{_S00Z = T4 '1_S0G = O/D '_SOT = ¢ :pasn aIam sanjeA GUIMO][0} 8L} ‘'SUOeINWIS |[e Jod :SBI0N

NIH-PA Author Manuscript

0'8 0 0 08- Kouaye| xj1ds L
0'v'0's'o'v'o’s S0 e S Kouanbauy pauiagaid S
0's'0o's T0- 8 0 Anigeisiq feseg o

0'C €0- S S sjenuajodiayy o)

4 €0 S S apow paxiA d
0'se-'0 90— 0T S 18Ing punogay 0

ST 90— 01T S Bunsing a1seyd N

14 90— 0T S Bunsing o1uo | N

- 90— 0T 0€ Bunsing BuiziejodiadAH |

- 0 0 0¢ Bumyids BuizirejodiadAH N
LT'STLT'ST 0 0 [ Aupigessig induj r
0'6T'0'ST'O'ST'0'ST 0 0 S JojesBaul |
(q0T+1)2 0 0 S Z sse|D H
0'se-'0 0 0 S aj1ds punogay 9
0'ST0'ST-'0'ST 0 0 S AujigeLeA pjoysaiy L 4
0'ST'T'S0'0'ST 0 0 S UOIBPOWIIOIDY 3
ST 0 0 S Buyids a1seyd a

4 0 0 S uoneidepe Aouanbaly axids o)

90T +1 0 0 0 T sse|D d

ST 0 0 0 Bumyids a1uo v
[s/AloP1 [siAlofy - [sinlofty [i-sTe aimesd  |oued

T 3lqel

NIH-PA Author Manuscript

'sanje, Jalsweled

NIH-PA Author Manuscript

Neural Comput. Author manuscript; available in PMC 2010 October 13.



