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Abstract
We provide analytical solutions for mean firing rates and cross-correlations of coincidence detector
neurons in recurrent networks with excitatory or inhibitory connectivity with rate-modulated steady-
state spiking inputs. We use discrete-time finite-state Markov chains to represent network state
transition probabilities, which are subsequently used to derive exact analytical solutions for mean
firing rates and cross-correlations. As illustrated in several examples, the method can be used for
modeling cortical microcircuits and clarifying single-neuron and population coding mechanisms. We
also demonstrate that increasing firing rates do not necessarily translate into increasing cross-
correlations, though our results do support the contention that firing rates and cross-correlations are
likely to be coupled. Our analytical solutions underscore the complexity of the relationship between
firing rates and cross-correlations.

1. Introduction
Neuronal codes have been the focus of considerable past work at both the experimental and
theoretical levels, which has underscored the importance of firing rate and cross-correlation,
though their exact roles in information processing and representation remain to be elucidated
fully (Abeles, 1991; Alonso, Usrey, & Reid, 1996; Merzenich et al., 1996; Stevens & Zador,
1998; Steinmetz et al., 2000; Eagleman and Sejnowski, 2000; Niebur, 2002; Tomita and
Eggermont, 2005). Given the importance of rate and cross-correlation in neural coding, the
determination of how they differentially affect neuronal responses assumes significance if the
impact of these different neural codes is to be fully appreciated.

Much of the theoretical basis for understanding information processing and neural coding in
complex biological systems is based on computational modeling―numerical solutions of the
underlying model equations. While this approach has proven extremely useful and is the only
practical one in many cases, analytical solutions nearly always would be preferable if they were
available. Analytical solutions for neuronal coding would be especially useful to determine the
relative contributions of different types of neuronal codes in network activity. It is the
derivation and exploration of these types of solutions that forms the motivation for our current
work.

In this article, we present analytical solutions for recurrent networks of particularly simple
model neurons, coincidence detectors, with arbitrary connectivity and thresholds. By “arbitrary
connectivity,” we mean that the network can have an arbitrary number of loops, the case of
networks without loops having been solved by Mikula and Niebur (2005). However, we require
that the network be strongly connected (i.e., it cannot be subdivided in subnetworks), as
discussed below. Synapses can be of arbitrary strengths, they can be excitatory and inhibitory,
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and they can be between any two neurons, with or without loops. The input to the network is
characterized in terms of the average firing rate. We derive exact closed-form solutions for all
neurons (and pairs) in the network in the same form for the steady state. The model is based
on our previous analytical solutions for the output firing rate of an individual coincidence
detector receiving an arbitrary number of excitatory and inhibitory inputs, in both the presence
and absence of synaptic depression (Mikula & Nieburm, 2003a, 2003b, 2004), and on our
solutions for multilayer feedforward networks of coincidence detectors (Mikula & Niebur,
2005).

After defining methods and notations in section 2, we present our main result, the closed-form
expressions for steady-state firing rates and cross-correlations, in section 3. Several examples
are studied in section 4 and compared with numerical solutions in section 5. Limitations of the
model and implications regarding neural coding are discussed in section 6. The notation used
is summarized in Table 1.

2 Methods
2.1 Model Neurons: Coincidence Detectors

The model neurons utilized in this study are coincidence detectors, also known as linear
threshold gates, McCulloch-Pitts neurons receiving weighted inputs, or Perceptron units
(McCulloch & Pitts, 1943; Rosenblatt, 1958; Rojas, 1996). A coincidence detector is a
computational unit that fires at time t if the weighted sum of its inputs received within the
window (t,t – δt) equals or exceeds the threshold θ. This is a very simplified model of a neuron,
but it is analytically tractable, and there is considerable experimental evidence indicating that
at least under certain conditions, such as high background synaptic activity, neurons can
function as coincidence detectors (Abeles, 1982; Wörgötter, Niebur, & Koch, 1991; König,
Engel, & Singer, 1996; Destexhe, Contreras, & Steriade, 1998; Kempter, Gerstner, & van
Hemmen, 1998; Destexhe & Pare, 1999). Thus, even though our model neuron is very simple,
it carries biological significance and may be considered biologically realistic under certain
experimental conditions. We also point out that our formalism is applicable to the larger class
of sigma-pi type of model neurons (Mel, 1993). A sigma-pi unit is a model neuron that sums
contributions over clusters of input synapses, and the resulting sums are then multiplied.
Optionally, a nonlinearity can be applied to the sum of products.

In many cases, it makes sense to think of δt as of a period on the order of 5 to 10 ms. This is
the timescale of fast ionic synaptic conductances, and it is at this timescale that synaptic events
superpose and interact. We do not, however, make use of this specific setting in our analysis
other than requiring that it is sufficiently small that a maximum of one spike can be generated
in a period of this length. An example neuron is shown in Figure 1, which also introduces some
of the notation used.

2.2 Network Architecture
We define our network of n coincidence detectors as a pair, (C, θ), where C is a connectivity
matrix (also known as an adjacency matrix) whose (i, j)th entry, Cij, is the numerical value of
the connection from the ith coincidence detector to the jth coincidence detector, and where the
threshold vector, θ, whose ith element, denoted θI, is the nonnegative threshold for the ith
coincidence detector. For a network of n neurons, the size of C is n2, and the values of the
connectivity matrix are real numbers—positive for excitatory connections and negative for
inhibitory connections. For reasons that will become apparent in section 3.2, werequire that
our network be strongly connected in the graph-theoretic sense; that is, it is necessary that all
nodes be reachable from every other node by at least one direct or indirect path. Whether a
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graph has this property can be tested efficiently (Corman, Leiserson, Rivest, & Stein, 2001);
it is a very weak constraint and likely fulfilled for any biological neural network.

2.3 Input: Binomial Spike Trains with Specific Cross-Correlations
The inputs to our network are represented by the set I of all possible input combinations, Ik,
k = 1, …, 2n, and their corresponding probabilities, P(Ik). In previous reports (Mikula & Niebur,
2003a; Niebur, 2007), we introduced a systematic method for the generation of an arbitrary
number of spike trains with specified firing rates (and also with specified pair-wise mean cross-
correlations; only uncorrelated spike trains are used as input in the examples used in this
article). Action potentials are distributed according to binomial counting statistics in each spike
train. A physiologically important special case is obtained if the rate of incoming spikes is low
and convergence is high; the binomial statistics that governs the spikes generated by a
coincidence detector can then be approximated by Poisson statistics. We further note that
throughout this article, we often refer to the probability that a bin contains a spike simply as
an input or output firing rate, with the understanding that the actual firing rate is obtained by
dividing the probability by the length of the time bins, δt.

2.4 Network Dynamical Equation
Synthesizing what we have stated above, the equation for updating the recurrent network (C,
θ) is given by

(2.1)

where ψ(t) is a binary row vector denoting the network state at time t and I(t) is a binary row
vector denoting the input at time t. The symbol Θ( ) represents the component-wise Heaviside
function, that is, the Heaviside step function (zero for negative arguments, unity for zero or
positive arguments) applied componentwise to the n-tuple, which is its argument.

3 Results
In this section, we derive the main results of this article: the exact steady-state solutions for
mean firing rates and cross-correlations in a recurrent network of coincidence detectors
receiving rate-and cross-correlation modulated binomial inputs. Toward this end, we recast
our network model in terms of a Markov chain.

3.1 Markov Chain Transition Matrix
Let Ψ be an enumeration of all 2n network states such that each row contains a unique state;
thus, row i of the matrix Ψ contains the state ψi. To compute the Markov chain transition matrix,
Ω, we note that it is a matrix of size 2n x 2n, whose ith row tells us how the ith network state,
ψi, probabilistically transforms into other network states in the next time step of the discrete
network dynamics. That is, entry (i, j) in this matrix is the probability that state ψi goes to state

ψj in the next time step, . We use equation 2.1 to compute the network states
at time t + 1 for different probabilistically occurring inputs, Ik, and thus obtain

(3.1)

where the sum is over all 2n input states and where Δ( , ) is a generalized Kronecker-δ function
that takes two network states as input and yields unity if the states are identical and zero
otherwise.
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3.2 Steady-State Vector of the Markov Chain Transition Matrix
Let π(t) be the row vector of size 2n whose ith component denotes the probability that the
network is in state i at iteration t. Using the elements of Ψ as indices for the Markov chain
transition matrix Ω, it follows from elementary properties of Markov chains that

(3.2)

The long-term probabilities of finding the network in each of its possible states are found from

(3.3)

subject to the normalization condition,

(3.4)

since each component of this vector is the probability of finding the network in the
corresponding system state.

In words, equations 3.3 to 3.4 say that π is the eigenvector of the transition matrix with
eigenvalue 1 and of unit length. Because the graph describing the network states is, by
assumption, strongly connected, the transition matrix Ω is irreducible (Graham, 1987).

Since the elements of this matrix are transition probabilities, they are nonnegative real numbers.
According to the Perron-Frobenius theorem (Graham, 1987), the largest eigenvalue of the
matrix (the so-called Perron root) is then positive and real. Its value is bounded from below
and above by the smallest and largest row sums (sums of all elements of one row), and since
Ω is a (right) stochastic matrix, all row sums are unity (each term in a given row is the
probability that a given state goes to one of the system states, and the sum of these probabilities
has to be unity). The value of the Perron root must therefore be unity, satisfying the condition
that the eigenvalue of Ω is indeed 1.

So far, we have shown that equations 3.3 and 3.4 have a solution. In the final step, we show
that it is unique. Indeed, the Perron-Frobenius theorem asserts that the Perron root is a simple
eigenvalue, that is, it is a simple root of the characteristic polynome of Ω, and the eigenspace
corresponding to this eigenvalue is therefore one-dimensional. The normalization condition
that the sum over all its elements is unity, equation 3.4, determines the remaining degree of
freedom and makes this normalized eigenspace therefore the unique solution of equations 3.3
and 3.4. We note in passing that the Perron-Frobenius theorem also guarantees that all elements
of the eigenvector corresponding to the Perron root are nonnegative, as is required for their
interpretation as probabilities of the system’s states.

In practice, an efficient way to compute the steady-state solution is as follows. Let I be the
2n × 2n identity matrix (this matrix I should not be confused with the set I of all possible inputs)
and define Q = Ω – I. Furthermore let e be the 2n-vector of all l’s, and b be the (2n + 1)-vector
with a 1 in position 2n + 1 and 0 elsewhere. The ith element of the steady-state vector of the
Markov chain, π, is the steady-state probability for the corresponding network state ψi or,
equivalently, the ith row of Ψ. The vector π is obtained as solution of the following linear
equation (Bolch, Greiner, de Meer, & Trivedi, 1998),
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(3.5)

Appending e to Q and a final 1 at the end of the zero vector on the right-hand side ensures that
normalization—that the solution vector π has components summing to 1.

3.3 Firing Rates for the Network
To obtain p(i), the mean firing rate of the ith neuron, we sum over the probabilities for all those
network states in which this neuron fires (i.e., is in state 1). Given that the components of the
vector π are the steady-state probabilities and that the ith column of the network state matrix
Ψ enumerates the activity states (0 or 1) of the ith neuron for all inputs, we obtain

(3.6)

with the sum running over all 2n input states.

3.4 Cross-Correlations
The Pearson cross-correlation coefficient between neurons i and j is defined, as usual, as

(3.7)

where E() is the expectation value, calculated again as usual—E(i, j) := E(ψkiψkj) =
∑kπkψkiψkj and E(i) : = E(ψki) = ∑kπkψki = p(i) as in equation 3.6. Given that a neuron state
takes only values 0 and 1, we have  and

(3.8)

4 Examples
4.1 Mutual Inhibition (n = 2)

Let us consider the simple two-neuron recurrent network shown in Figure 2a with thresholds
set equal to +1. Connection weights shown as edge labels are equal to −1 between the neurons
and 1 for the inputs; thus, simultaneous input to a neuron from the other neuron and its external
input will be subthreshold and produce no output. Recalling from section 2.2 that the (k,l)th
entry of the connectivity matrix is defined as the weight of the connection to the kth neuron
from the lth neuron, we obtain a connectivity matrix given by the following:

(4.1)

There are two neurons and thus 22 input states. The resulting network state matrix, Ψ, is
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(4.2)

The first row of Ψ is the network state for having zero output spikes for both neurons, the
second row is the network state for having neuron 2 have one output spike and neuron 1 has
zero, and so on for all of the four rows of Ψ. Figure 2b illustrates the network state space.

We now proceed to construct the Markov chain transition matrix, Ω, using the rows of Ψ as
corresponding indices. Using equation 3.1, we obtain the following:

(4.3)

where p1 is the spiking probability of the input to neuron 1 and p2 is the spiking probability of
the input to neuron 2. See Figure 2b for the corresponding state diagram.

From section 3.1, we obtain π, the steady-state vector of the Markov chain transition matrix,
Ω:

(4.4)

where the ith element of π is the steady-state probability for the corresponding network state,
the ith row of Ψ .

The mean firing rate p(i) of the ith neuron in the network is given in equation 3.6 as the sum
over all those network states in Ψ in which the ith neuron has output unity, times the
corresponding probabilities for the network states, given by π. From that equation and equation
4.4, we obtain

(4.5)

(4.6)

where, as a reminder, πi is the ith component of vector π.

Plots of equations 4.5 and 4.6 as functions of the input rates, p1 and p2, are shown in Figures
2c and 2d. One of the defining properties of the firing rates is the behavior close to the point
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where both neurons receive continuous input, p1 = p2 = 1. The expressions in equations 4.5
and 4.6 are not defined here, and they cannot be continued into this point because different
limits are reached along different trajectories in the p1, p2 plane. This can be most clearly seen
on the axes p1 = 1 and p2 = 1. In the former case, neuron 1 fires continuously and neuron 2
never, and equations 4.5 and 4.6 yield p(1) = 1, p(2) = 0. The opposite occurs in the latter case
and p(1) = 0, p(2) = 1 is obtained. Other functional dependencies between p1 and p2 yield other
limits (not shown). No steady state is defined for the system in this limiting case.

The computation of the cross-correlation using equation 3.8 yields

(4.7)

Although one might intuitively expect negative correlation between the two mutually inhibitory
neurons, this intuition is not correct in the case we consider here. Each neuron inhibits its
partner in the next time step of length δt since the input to each neuron is collected over this
time period and the decision of whether to fire is made at its end. Since the inputs to the neurons
are not correlated in time, the cross-correlation between the activity of the neurons is identically
zero, as computed explicitly in equation 4.7. These results from the analytical solution are
confirmed by simulation (see section 5).

4.2 Feedback Inhibition (n = 3)
Let us now consider the three-neuron recurrent network receiving two uncorrelated and
differentially weighted inputs, shown in Figure 3a, with thresholds of neurons 2 and 3 set equal
to +1, and neuron 1 set equal to +3, and connection weights shown as edge labels. Recalling
from section 2.2 that the (k,l)th entry of the connectivity matrix is defined as the weight of the
connection to the kth neuron from the lth neuron, we obtain a connectivity matrix given by

(4.8)

Now there are three neurons, thus 23 input states, and the resulting network state matrix, Ψ, is

(4.9)

Thus, the first row of Ψ is the network state with zero output spikes for all three neurons, the
second row is the network state for neuron 3 having one output spike and neurons 1 and 2 have
zero, and so on for all the eight rows of Ψ. Figure 3b illustrates the network state space.

We now proceed to construct the Markov chain transition matrix, Ω, using equation 3.1. That
is, we determine how network states at time t get mapped to network states at time t + 1. For
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instance, the first row of Ψ, the state [000], gets mapped to the state [100] with probability
pin1,pin,2, and to state [000] with probability 1 – pin,1pin,2, where pin,i is the spike density for
the ith binomial input. For simplicity, we assume pin,1 = pin,2, which will be denoted as p.
Continuing in this manner for all 16 network states yields the following:

(4.10)

See Figure 3b for the corresponding state diagram.

From section 3.1, we obtain π, the steady-state vector of our Markov chain transition matrix,
Ω:

(4.11)

where the ith element of π is the steady-state probability for the corresponding network state,
the ith row of Ψ. One notable result is that the first component is identically zero, indicating
that the probability of finding the system in the fully quiet state (no neuron firing) is nil. This
might be a counterintuitive result since one might expect absence of firing in all neurons to be
a common state, in particular for very low input rates, that is, for p → 0. Figure 3b shows why
this intuition is wrong. The quiet state (000) can be reached only from itself. Therefore, a single
spike will propel the system out of this state, and it will never return to it again. Therefore, the
probability of finding this state in the steady-state solution vanishes. In the limit of vanishing
firing rates, the steady-state solution is the sequence of states 100 → 010 → 001 → 100 (loop
at bottom of Figure 3b). In the limit of low input, equation 3.2 yields probabilities of one-third
each for these three states and zero for all others, in agreement with this observation.

To obtain p(i), the firing rate of the ith neuron in our recurrent network, we use equation 3.6.
That is, we sum over all network states in Ψ, with the ith neuron output unity, times the
corresponding probabilities for the network states, given by π. Explicit solutions for the firing
rates for the three neurons comprising our network are as follows:

(4.12)
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(4.13)

(4.14)

Plots of equations 4.12 to 4.14 as a function of input rate, p, are shown in Figures 3c to 3e. In
agreement with the discussion of equation 4.11, the case p → 0 discussed above yields mean
firing rates of one-third for all three neurons. We also note in Figure 3c that in the opposite
extreme of input firing rate (i.e., for p → 1), the networks cycles exclusively through the
sequence of states 100 → 110 → 111 → 101 → 100 (loop around the center of the figure).
Since neuron 1 fires in all four of these states, its firing rate must be unity in this case; neurons
2 and 3 both fire in exactly two of the states, and therefore their firing rates must be one-half.
This result is confirmed by direct evaluation of equations 4.12 to 4.14 for p → 1.

The cross-correlations for pairwise neurons in Figure 3a, obtained using equation 3.8, p, contain
too many terms to display here; they are shown, plotted as a function of input rate, in Figures
3f to 3h.

Just as for the solutions for firing rates discussed earlier, naive intuition can be deceiving. While
the negative correlation between neurons 2 and 3 shown in Figure 3g may be expected since
these neurons are connected by a (one-way) inhibitory synapse, it may seem surprising that
the correlation between neurons 1 and 2 (see Figure 3f) and that between neurons 2 and 3 (see
Figure 3h), which are coupled by excitatory connections, are also negative for all input
frequencies. The reason for the observed anticorrelation is related to the discussion following
equation 4.11. As was observed there, in the case of vanishing input, the network will cycle
through the three states in which each of the neurons 1, 2, 3 are activated in order, one at a
time. Therefore, at a given time, exactly one of these neurons is active, while the other two are
consistently inactive; this results in negative cross-correlations. As p increases, this relationship
loses consistency, and for p → 1, the system locks into another loop in which neuron 1 is always
active and neurons 2 and 3 are firing in two of the four states. Inspection of Figure 3c shows
that each of the pairs of neurons is not correlated in this loop: if the state of one neuron is 1, it
is equally likely that that of the other neuron is 0 or 1).

4.3 Cortical Microcircuit (n = 4)
Next we turn to the derivation of exact solutions for a simple model inspired by the canonical
structure of cortical microcircuits (Callaway, 1998; Binzegger, Douglas, & Martin, 2004;
Douglas & Martin, 2004), which has recently been gaining popularity for use in modeling
studies (Grossberg & Howe, 2003; Raizada & Grossberg, 2003; Destexhe & Sejnowski,
2003; Grossberg & Swaminathan, 2004; Haeusler & Maass, 2007). Let us consider the four-
neuron recurrent network shown in Figure 4. The connectivity matrix is given by

(4.15)

The threshold matrix is given by
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(4.16)

Note that, as defined in section 2.1, a neuron fires if its input equals or exceeds the threshold
θ. An input of size 1 will thus fire the neurons with the thresholds given in equation 4.16.

There are two independent, rate-modulated binary inputs for our example. The first one consists
of feedforward (FF) inputs and targets layer IV (neuron 1). The second, referred to as feedback
(FB) input, modulates the superficial layers II/III (neuron 2) and the deep layer VI (neuron 3).
The FF input firing rate is denoted pff, whereas the FB input firing rate is denoted pfb. To ease
notation, we define 

The total number of states in the system is 64 (24 neuron states times 22 input states), and the
complete transition matrix Ω therefore has a dimension of 64 × 64. Most of its elements vanish
and rather than proceeding by a straightforward enumeration of all 4096 states, we now describe
a more efficient way for finding the steady-state solution. Define the network states as 4-tuples,
read from left to right; for example, 1000 denotes that neuron 1 produces an output of 1, whereas
neurons 2 to 4 produce no output (i.e., each has output 0). Consider now the neural state diagram
in Figure 4b, where the edge values are transition probabilities between the neural states. Note
that the number of neural states (disregarding input states) is only 16, and the dimension of the
transition matrix between neural states therefore is 16 × 16.

These transition probabilities are obtained from equation 3.1 and depend on the possible input
configuration probabilities, that is, from considering the different ways and associated
probabilities that a given neural state is transformed in one time step. For example, network
state 0000 is transformed to 1000 only if there is a spike in the feedforward input but not in
the feedback input. For instance, we find that the probability that 0000 is transformed to 1000
in one time step (0000 → 1000) is , and this is the entry in Table 2 for the matrix element
with index 0000 → 1000. By repeating this process for each network state, the Markov state
transition matrix is obtained. Most entries of the 16 × 16 matrix vanish; all nonzero entries are
listed in Table 2. We thus find that the matrix of transitions between the system states is indeed
quite sparse; only about 1% of its entries are nonzero (41/4096).

We obtain the steady-state vector per section 3.2. If specific values for pff and pfb are chosen,
a numerical solution of the linear system of equations, equation 3.5, with a 17 × 16 matrix is
easily computed. Our interest here, however, is in the analytical solution of the system. It is
obtained in straightforward though tedious computations for which symbolic equation solvers
(like Maple 10; Waterloo Maple) are well suited. The solution contains hundreds of terms and
is too verbose to show here. Firing rates and cross-correlations are computed from the solution
by using equations 3.6 and 3.8, respectively. Again, each of the analytical expressions for the
firing rates and cross-correlations contains hundreds of terms. They are not listed here
explicitly; instead, they are shown in graphical form in Figure 5 and Figure 6. Of note are the
“spikes” in the cross-correlations, Figure 6, as both input probabilities approach unity. It is
probable that these instabilities arise from vanishing denominators in equation 3.8; note that
the mean rates p() of all four neurons go toward unity in the limit pff, pfb → 1 (see Figure 5).
The resulting simultaneously vanishing denominators and numerators in equation 3.8 clearly
pose difficulties for the numerical evaluation routines whose results are shown in Figure 6.
Comparison with simulations confirms the validity of the analytical solutions in general and,
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in particular, that these “spikes” in the cross-correlation solutions are likely artifacts of the
equation solver (see section 5).

5 Numerical Simulations
Simulations of the three networks discussed in section 4 were run in Matlab. The initial states
of each network were chosen randomly, and each network was then iterated through 5000
iterations of its basic dynamics. The first 2000 iterations were discarded to remove effects due
to transient network activity, and the resulting steady states are characterized in this section.

All simulations were run for finite input probabilities (as discussed, formally obtained results
for vanishing p and pff, pfb may depend on the initial state and are not valid). Although small
variations (jagged curves) are noted due to the finite lengths of the simulation runs, particularly
for the correlation functions for which the total number of contributing events is lower than
that for the mean firing rates, overall the agreement with the analytical solutions is excellent.

The simulation results for the firing rates confirm the exact solutions from section 4.2, shown
in Figures 2c and 2d.

Simulation results for the firing rates and cross-correlations also confirmed the validity of the
the exact solutions in Figures 3c to 3h. As discussed, the finite length of the simulation runs
leads to small variations around the exact solutions, and this effect is more pronounced for
correlations than for the mean firing rates because the average is over larger numbers of events
(spikes) in the latter case than in the former (coincidences of spikes).

Our analytical results for the firing rates and cross-correlations of the cortical microcircuit from
section 4.3, shown in Figure 5 and Figure 6, were also corroborated by the numerical work.
Again, the same “jaggedness” noted previously is observed for the cross-correlations. On the
other hand, the numerical instabilities in the analytical solution close to the point pfb = pff = 1
(“spikes” in Figure 6), which are due to the simultaneously vanishing numerators and
denominators of the analytical solutions, are not observed in the simulations; this confirms that
they are due to instabilities of the symbolic equation solver used and not properties of the
system.

6 Discussion
This article extends our previous analytical results (Mikula & Niebur, 2003a, 2003b, 2004,
2005) for an individual coincidence detector and a feedforward network of coincidence
detectors to a recurrent network of coincidence detectors. The limitations of using coincidence
detectors as model neurons, mainly targeting biological plausibility, have been discussed
previously (Mikula & Niebur, 2003a). We note that our derivation is valid only for steady-state
neuronal responses and does not inform us about transient responses, which are likely to be of
importance in many cases.

The extension of our analytical methods to arbitrary networks of coincidence detectors reveals
two additional limitations: combinatorial explosion and algebraic intractability. The
combinatorial explosion limits the size of the networks that may be analytically solved since
the computations scale as 2n for n neurons. In practice, this limits our solutions to moderately
sized networks of neurons, which is still useful for analyzing systems like the canonical
microcircuit discussed here. In addition to the networks described in section 4, we have solved
systems with up to n = 6 neurons (results not shown).

The second limitation, analytical intractability, is a problem arising from symbolical evaluation
of expressions containing hundreds or thousands of terms. Related to this problem, but not to
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the validity of the analytical solutions themselves, are issues related to the numerical evaluation
for the purpose of plotting these analytical solutions. Where this is most evident in the results
presented here is in Figure 6, where numerical instabilities appear during the evaluation of the
exact solutions for some large values of pff and pfb. As discussed, these are most likely caused
by simultaneously vanishing denominators and numerators in equation 3.8; note that the mean
rates p() of all four neurons go toward unity in the limit pff, pfb → 1 (see Figure 5).
Simultaneously vanishing denominators and numerators in equation 3.8 clearly pose
difficulties for the numerical evaluation routines whose results are shown in Figure 6.
Comparison with the network simulation (not shown) confirms that these instabilities are
artifacts of the numerical evaluation.

Simple examples yielding insight into the system’s behavior are the cases when all inputs to
the canonical microcircuit have either very high frequency or very low frequency. Figure 5
shows that in the former case (pff, pfb → 1), the firing rates of all four neurons approach unity,
as one might have expected. In the opposite case (pff, pfb → 0), the same figure shows that all
four neurons again approach a common firing rate, which is now one-third. This arises because
for low input probabilities, the steady state of the system is the cycle 0100 → 0010 → 1001
→ 0100 (in the upper center part of Figure 4b). From inspection (or from formal evaluation of
equation 3.6), it is clear that the mean firing rates of all three neurons are one-third while in
this cycle. While this numerical result could have been obtained from simulation of the system,
the systematic evaluation of the analytical solution provides a much more principled approach.

It is interesting to compare the derivation of recurrent network solutions with the derivation of
feedforward network solutions (Mikula & Niebur, 2005). We note that the role of the Markov
chain transition matrix in the recurrent network solution is analogous to the role of the truth
table in the feedforward network solution and that the computational complexity for recurrent
network solutions scales as 2n, where n is the number of neurons in the network, whereas for
feedforward network solutions, the computational complexity scales as 2m, where m is the
number of inputs. While it might appear from these numbers that the complexity of recurrent
networks may be smaller than that of feedforward nets (for m > n), this is not the case. The
discrepancy is resolved by incorporating the multiplicative complexity of the inputs into the
recurrent network solutions: while the number of neural states of the recurrent network is 2n

and the Markov transition matrix therefore has 2n × 2n elements, each of these elements may
consist of 2m terms—one for each input configuration. This yields a modified computational
complexity of 2n+m, thereby making the feedforward network solutions considerably more
efficient than the recurrent network solutions and underscoring the fact that recurrent networks
are exponentially more complicated than feedforward networks.

What is the relationship of our model, involving coincidence detectors with weighted
connections and receiving probabilistic inputs of varying rates and cross-correlations, to finite
automata (also known as finite state machines)? If our model has no probabilistic inputs, then
it reduces to a finite automaton consisting of coincidence detectors, which have long been
recognized as useful for pattern recognition (Keller, 1961). The incorporation of differentially
rate modulated inputs increases the dynamic complexity of the system and at the same time
increases the relevance of the model for neuroscience studies where the circuits of interest are
open systems that receive known inputs that are characterized in terms of their rates. Thus, we
believe our model formulation, while simplistic, nonetheless bears relevance for theoretical
and computational studies of small to modest-sized neuronal circuits, where exact solutions
are desirable.

In our analysis, we focused on firing rates and cross-correlations, leaving aside the issue of
higher-order correlations. These may well be of importance, but they are more difficult to
analyze, visualize, and interpret, and there are also many fewer data available to compare
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theoretical predictions to experimental results (but see Gerstein & Clark, 1964; Abeles &
Goldstein, 1977; Abeles & Gerstein, 1988; Abeles, 1991; Martignon, Von, Grun, Aertsen, &
Palm, 1995; Riehle, Grüm, Diesmann, & Aertsen, 1997, for experimental studies of higher
order correlations). Additional analysis techniques may be useful for understanding higher-
order correlations, for instance, snowflake plots (Czanner, Grüm, & Iyengar, 2005), and may
be an interesting direction for further development of the methods described in this article.

What do our results say about the relationship between firing rates and cross-correlations? As
is evident in Figure 5 and Figure 6, the relationship is invariably nonlinear and potentially
counter-intuitive. For example, Figure 5d shows that the firing rate of neuron 4 increases as
the rate of the feedback input is increased, yet from Figure 6d, the cross-correlation between
neurons 4 and 1, q(4,1), decreases as the rate of the feedback input is increased. Either of these
results is consistent with our understanding of the network dynamics: increasing feedback input
leads to increased firing rates to neuron 3 and subsequently, via an excitatory synapse, to
increased firing of neuron 4. At the same time, the inhibitory synapse from neuron 4 to neuron
1 may lead to low correlation between these two neurons, and it does, in this situation. Together,
these observations demonstrate that increasing firing rates do not necessarily translate into
increasing cross-correlations, though our results do support the contention that firing rates and
cross-correlations are likely to be coupled. The derivation of analytical solutions underscores
the complexity of the relationship between firing rates and cross-correlations.

An example of mixed codes involving firing rates and cross-correlations in complex nervous
systems might be the representation of selective attention in the primate cortex (Niebur & Koch,
1994). Selective attention has been shown in electrophysiological studies to be correlated both
with rate changes as well as with changes in the fine temporal structure (on the order of
milliseconds or tens of milliseconds) of neural activity (Moran & Desimone, 1985; Steinmetz
et al., 2000; Fries, Reynolds, Rorie, & Desimone, 2001; Niebur, 2002; Saalmann, Pigarev, &
Vidyasagar, 2007). It will take more experimental as well as theoretical work to come to a
conclusive answer which of the proposed neural coding schemes are used by the different
nervous systems.
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Figure 1.
Model neuron used in this study, with three inputs in this case. The coincidence detector (circle
in the center), with index, i, produces an output spike (left) when the sum over weighted binary
inputs (right) in any given time bin is equal to or above threshold, θ. The thresholding operation
is symbolized by the Heaviside function Θ (see equation 2.1). The convention of representing
the threshold, θ, in the lower half of the neuron, and the index, i, in the upper half, will be used
in all figures.
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Figure 2.
(a) A simple two-neuron recurrent network with mutual inhibition receiving two excitatory
binomial inputs. Both thresholds are equal to 1. (b) State transition diagram for simple two-
neuron recurrent network in a. Network states are 2-tuples, read from left to right; for example,
10 denotes that neuron 1 produces an output of 1, whereas neuron 2 produces no output. (c, d)
Firing rates plotted as a function of input firing rate for this network.
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Figure 3.
(a) A simple three-neuron recurrent network receiving two differentially weighted binomial
input. Thresholds for neurons 2 and 3 are unity, and for the threshold for neuron 1 is 3. Edge
values are connection weights. (b) State transition diagram for the network in a. Network states
are 3-tuples, read from left to right; for example, 100 denotes that neuron 1 produces an output
of 1, whereas neurons 2 and 3 produce no output (i.e., each has output 0). Edge values are
network state transition probabilities. Note that the outgoing probabilities at individual nodes
sum to unity, (c–h) Firing rates and cross-correlations plotted as a function of input firing rate
for the network shown in Figure 3a. (c–e) Output firing rates of the network as a function of
input rate, p. (c) p(l) versus p, (d) p(2) versus p, (e) p(3) versus p. (f–h) Cross-correlations in
the network as a function of input rate, p. (f) q (1,2) versus p, (g) q(2,3) versus p, (h) q(3,1)
versus p. Exact solutions from equations 4.12 to 4.14 and 3.8 shown as solid black lines, and
simulation results as dotted lines.
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Figure 4.
A cortical microcircuit. (a) Anatomy. A four-neuron recurrent network receiving two excitatory
rate-modulated feedforward and feedback inputs targeting different cortical layers. Edge values
are connection weights. Neurons 1 to 3 are excitatory, whereas 4 is inhibitory. All neurons
have unitary threshold. (b) State diagram. Inputs are two rate- and cross-correlation-modulated
binomial spike trains characterized by firing rate p and cross-correlation q. Network states are
4-tuples, read from left to right; for example, 1000 denotes that neuron 1 produces an output
of 1, whereas neurons 2 to 4 produce no output (i.e., each has output 0). Edge values (not
shown) are state transition probabilities given in Table 2. Note that both the number of inputs
and outputs for a given state are a power of 2.
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Figure 5.
Firing rates plotted as a function of feedforward input firing rate, pff, and feedback input firing
rate, pfb, for the four-neuron recurrent network shown in Figure 4. (a) p(l), (b) p(2), (c) p(3),
and (d) p(4). These plots are based on the exact solutions.
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Figure 6.
Cross-correlations plotted as a function of feedforward input firing rate, pff, and feedback input
firing rate, p jb, for the four-neuron recurrent network shown in Figure 4. (a) q(1,2), (b) q(2,3),
(c) q(3,4), (d) q(4,1), (e) q(1,3), and (f) q(3,4). These plots are based on the exact solutions.
Note the instabilities involved with evaluating the exact solutions for some large values of
p ff and pjb
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Table 1
Notation Used.

Symbol Description Dimension/ Range/ Number /
Value

Δ( , ) Generalized Krönecker δ {0,1}n × {0,1}n → {0,1}

C Connectivity (or adjacency) matrix ℝn × ℝn

I Set of all input vectors Total: 2n

I(t) Input at time t {0, 1}n

Ii Input vector number i {0, 1}n

n Number of neurons ℕ+

N Number of system states N=2n

Ω Transition matrix [0, 1]N × [0, 1]N

P(Ii) Probability of input vector i [0, 1]

π(t) State probabilities of system at time t [0, 1]N

π Steady-state probabilities of the system (t → ∞) [0, 1]N

πi Component i of π (i.e., steady-state probability of state i) [0, 1]

pi Mean rate of input to neuron i [0, 1]

p(i) Firing rate of neuron i [0, 1]

ψ(t) State of system at time t {0, l}n

ψI State vector number i {0, 1}n

Ψ Matrix of all states {0, l}N × {0,1}n

θ Threshold vector
ℝ+

n

Θ( ) ℝn → {0,1}n

Note: [0, 1] is the (closed) interval from 0 to 1, and 0 0 and l. {0, 1} denotes the binary pair of values
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Table 2
State Transition Table for the Recurrent Network Shown in Figure 4.

State Transition Probability

0000 → 0000
p ff p fb̄

0000 → 0110
p ff̄ p fb

0000 → 1000
p ff p fb̄

0000 → 1110 pff pfb

0001 → 0000
p fb̄

0001 → 0110 pfb

0010 → 1001
p fb̄

0010 → 1111 pfb

0011 → 0001
p ff p fb̄

0011 → 0111
p ff̄ p fb

0011 → 1001
p ff p fb̄

0011 → 1111 pff pfb

0100 → 0010
p ff p fb̄

0100 → 0110
p ff̄ p fb

0100 → 1010
p ff p fb̄

0100 → 1110 pff pfb

0101 → 0010
p fb̄

0101 → 0110 pfb

0110 → 1011
p fb̄

0110 → 1111 pfb

0111 → 0011
p ff p fb̄

0111 → 0111
p ff̄ p fb

0111 → 1011
p ff p fb̄

0111 → 1111 pff pfb

1000 → 0100
p ff p fb̄

1000 → 0110
p ff̄ p fb

1000 → 1100 pffpfb¯ pff
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State Transition Probability

1000 → 1110 pff pfb

1001 → 0100
p fb̄

1001 → 0110 pfb

1010 → 1101
p fb̄

1010 → 1111 pfb

1011 → 1101
p ff p fb̄

1011 → 0111
p ff̄ p fb

1011 → 1101
p ff p fb̄

1011 → 1111 pff pfb

1100 → 0110
p ff̄

1100 → 1110 pff

1101 → 0110 1

1110 → 1111 1

1111 → 0111
p ff̄

1111 → 1111 pff
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