Andrew Gordus PHD

Assistant Professor of Biology
Telephone Number: 410-516-6509

Johns Hopkins University
3400 N. Charles Street
Baltimore, MD 21218
Room: Biology East 207
Lab Page
Areas of Research
Cellular + Molecular Neuroscience
Neural Circuits, Ensembles + Connectomes

Graduate Program Affiliations

Neuroscience Training Program

Cellular, Molecular, Developmental and Biophysics (CMDB) Graduate Program

 Neural Circuits for Novel and Innate Behaviors

We live in a dynamic, and at times unpredictable environment. In order to maximize our use of the environment, we must be able to generate both novel and predictable behaviors to engage with the world around us. Our lab is interested in the cellular and genetic mechanisms that drive novel and innate behaviors, and how organisms sense and adjust to environmental variability. To address these issues, we use two animals as model organisms: nematodes and spiders.

The nematode C. elegans has been a useful genetic and developmental tool for understanding fundamental questions in behavioral genetics, and is one of the few animals to have its complete neuronal architecture mapped. By using a variety of genetic tools to manipulate and observe the activity of the neurons in this network, we hope to understand how behavioral novelty arises and adjusts to changing environmental and internal states.

Complex behaviors are often built by a pattern of simpler behaviors. Our lab uses the orb-weaving behavior of the spider U. diversus to understand how neuronal networks can encode a behavior that ultimately results in the elegant geometry of an orb-web. Orb-weavers do not use their vision for web-construction, and are thought to use path integration and spatial memory to map out their environment and influence their decisions. By using a combination of innovative behavioral, neuronal, and genetic approaches, we hope to understand how this behavior is encoded and adjusts to environmental input.



Back to faculty profiles