S. Cencheng, C. Jaewon, M. Ronak, X. Ting, and J. T. Vogelstein. Independence Testing for Temporal Data. Transactions on Machine Learning Research, 2024.
X. Li, N. Bianchini Esper, L. Ai, S. Giavasis, H. Jin, E. Feczko, T. Xu, J. Clucas, A. Franco, A. Sólon Heinsfeld, A. Adebimpe, J. T. Vogelstein, C. Yan, O. Esteban, R. A. Poldrack, C. Craddock, D. Fair, T. Satterthwaite, G. Kiar, and M. P. Milham. Moving Beyond Processing and Analysis-Related Variation in Neuroscience. Nature Human Behaviour, 2024.
Michael Winding, Benjamin D Pedigo, Christopher L Barnes, Heather G Patsolic, Youngser Park, Tom Kazimiers, Akira Fushiki, Ingrid V Andrade, Avinash Khandelwal, Javier Valdes-Aleman, Feng Li, Nadine Randel, Elizabeth Barsotti, Ana Correia, Richard D Fetter, Volker Hartenstein, Carey E Priebe, Joshua T Vogelstein, Albert Cardona, and Marta Zlatic. The connectome of an insect brain. science, 2023.
D. Kudithipudi, M. Aguilar-Simon, J. Babb, M. Bazhenov, D. Blackiston, J. Bongard, A. P. Brna, S. Chakravarthi Raja, N. Cheney, J. Clune, A. Daram, S. Fusi, P. Helfer, L. Kay, N. Ketz, Z. Kira, S. Kolouri, J. L. Krichmar, S. Kriegman, M. Levin, S. Madireddy, S. Manicka, A. Marjaninejad, B. McNaughton, R. Miikkulainen, Z. Navratilova, T. Pandit, A. Parker, P. K. Pilly, S. Risi, T. J. Sejnowski, A. Soltoggio, N. Soures, A. S. Tolias, D. Urbina-Meléndez, F. J. Valero-Cuevas, G. M. van de Ven, J. T. Vogelstein, F. Wang, R. Weiss, A. Yanguas-Gil, X. Zou, and H. Siegelmann. Biological underpinnings for lifelong learning machines. Nature Machine Intelligence, (3)4:196-210, 2022.
J. Poline, D. N. Kennedy, F. T. Sommer, G. A. Ascoli, D. C. Van Essen, A. R. Ferguson, J. S. Grethe, M. J. Hawrylycz, P. M. Thompson, R. A. Poldrack, S. S. Ghosh, D. B. Keator, T. L. Athey, J. T. Vogelstein, H. S. Mayberg, and M. E. Martone. Is Neuroscience FAIR? A Call for Collaborative Standardisation of Neuroscience Data. Neuroinformatics, 2022.
J. T. Vogelstein, T. Verstynen, K. P. Kording, L. Isik, J. W. Krakauer, R. Etienne-Cummings, E. L. Ogburn, C. E. Priebe, R. Burns, K. Kutten, J. J. Knierim, J. B. Potash, T. Hartung, L. Smirnova, P. Worley, A. Savonenko, I. Phillips, M. I. Miller, R. Vidal, J. Sulam, A. Charles, N. J. Cowan, M. Bichuch, A. Venkataraman, C. Li, N. Thakor, J. M. Kebschull, M. Albert, J. Xu, M. H. Shuler, B. Caffo, T. Ratnanather, A. Geisa, S. Roh, E. Yezerets, M. Madhyastha, J. J. How, T. M. Tomita, J. Dey, N. Huang, J. M. Shin, K. A. Kinfu, P. Chaudhari, B. Baker, A. Schapiro, D. Jayaraman, E. Eaton, M. Platt, L. Ungar, L. Wehbe, A. Kepecs, A. Christensen, O. Osuagwu, B. Brunton, B. Mensh, A. R. Muotri, G. Silva, F. Puppo, F. Engert, E. Hillman, J. Brown, C. White, and W. Yang. Prospective Learning: Back to the Future. arXiv [cs.LG], 2022.