Jiou Wang MD, PhD
Walder Distinguished Professor of Biochemistry and Molecular Biology
Walder Distinguished Professor of Biochemistry and Molecular Biology
Biochemistry and Molecular Biology, JHSPH
We are interested in the biological basis for protein and RNA homeostasis in neurodegeneration. We hope to solve problems that not only have biological significance but also have important implications for understanding and treating disease.
Discovering key regulators of protein homeostasis: Protein misfolding plays a central role in the pathogenesis of many neurodegenerative diseases, including Alzheimer’s, Parkinson’s, amyotrophic lateral sclerosis (ALS), and frontotemporal dementia (FTD). Elucidating the mechanisms that connect the misfolded proteins to neurodegeneration is a critical step to understand these diseases and to develop novel and effective therapies. We use unbiased genetic screens to understand how cells boost protein quality control to counter the effects of the misfolded proteins. We are also investigating hidden protein quality control regulatory pathways, building on an emerging paradigm in which post-translational modification switches act on previously unrecognized networks that reprogram the protein quality control systems. In addition, we study the regulation of protein synthesis under stress conditions, which is implicated in a myriad of human diseases.
Uncovering novel players in the regulation of RNA homeostasis: Because perturbation of RNA homeostasis in the central nervous system is another major theme in neurodegeneration, we are interested in studying new pathways of RNA processing. We have uncovered novel functions of RNA-binding proteins linked to neurodegeneration, showing impacts on protein quality control regulation, gene silencing activity mediated by mature miRNAs, and in phase transition and stress granule formation.
Revealing the mechanisms of repeat expansion diseases: We are interested in understanding the biology of a hexanucleotide repeat expansion in the C9orf72 gene that is the most common cause of ALS and FTD, and may serve as a model for understanding other neurodegenerative diseases with similar repeat expansions. Our studies have pointed to a molecular cascade that connects the structure of the C9orf72 nucleotide repeat to cellular defects and human pathology. We are also investigating the role of the C9orf72 protein in the regulation of autophagy and metabolism, which have critical roles in the functioning of the nervous system.
Postdoctoral positions are available to lead these studies. For inquiries, send an email to jiouw@jhu.edu.